Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida. (1/8)

Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 A, beta = 110.48 degrees. Data were collected to 1.96 A and a molecular-replacement solution was found with eight molecules in the asymmetric unit.  (+info)

Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar. (2/8)

In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 2000. Temperature, fish size and photoperiod at vaccination, and the time between vaccination and sea transfer thus varied among the groups. In all vaccinated groups, growth was reduced for 1 to 2 mo following vaccination. Intra-abdominal lesions developed faster, and stabilised at a higher level in the groups vaccinated early at the highest temperature and the smallest fish size. Growth in seawater was influenced by the time of vaccination. At the end of the experiment, the group vaccinated last (MAR) was the heaviest of the vaccinated groups (4.0 kg), and the group vaccinated first, i.e. in August (AUG) was smallest (3.2 kg). Growth rate in seawater differed only in the summer when specific growth rate was above 1.45 in all groups. There was a correlation between adhesion, condition factor and number of weeks from vaccination to sea transfer. The AUG group had the highest condition factor, with a top level of 1.64 in autumn, and this group also displayed the highest incidence of deformed vertebra. The experiment shows that side effects of vaccination can be significantly reduced when planning the vaccination strategy, by taking environmental factors and fish biology into consideration.  (+info)

A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. (3/8)

The cold-water-fish pathogen Vibrio salmonicida expresses a functional bacterial luciferase but produces insufficient levels of its aliphatic-aldehyde substrate to be detectably luminous in culture. Our goals were to (i) better explain this cryptic bioluminescence phenotype through molecular characterization of the lux operon and (ii) test whether the bioluminescence gene cluster is associated with virulence. Cloning and sequencing of the V. salmonicida lux operon revealed that homologs of all of the genes required for luminescence are present: luxAB (luciferase) and luxCDE (aliphatic-aldehyde synthesis). The arrangement and sequence of these structural lux genes are conserved compared to those in related species of luminous bacteria. However, V. salmonicida strains have a novel arrangement and number of homologs of the luxR and luxI quorum-sensing regulatory genes. Reverse transcriptase PCR analysis suggests that this novel arrangement of quorum-sensing genes generates antisense transcripts that may be responsible for the reduced production of bioluminescence. In addition, infection with a strain in which the luxA gene was mutated resulted in a marked delay in mortality among Atlantic salmon relative to infection with the wild-type parent in single-strain challenge experiments. In mixed-strain competition between the luxA mutant and the wild type, the mutant was attenuated up to 50-fold. It remains unclear whether the attenuation results from a direct loss of luciferase or a polar disturbance elsewhere in the lux operon. Nevertheless, these findings document for the first time an association between a mutation in a structural lux gene and virulence, as well as provide a new molecular system to study Vibrio pathogenesis in a natural host.  (+info)

The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. (4/8)

 (+info)

The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida. (5/8)

 (+info)

Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida. (6/8)

 (+info)

LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. (7/8)

 (+info)

Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids. (8/8)

 (+info)