Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. (33/2815)

BACKGROUND: This study analyzed the regulation and the role of the cardiac steroidogenic system in myocardial infarction (MI). METHODS AND RESULTS: Seven days after MI, rats were randomized to untreated infarcted group or spironolactone- (20 and 80 mg x kg-1 x d-1), losartan- (8 mg x kg-1 x d-1), spironolactone plus losartan-, and L-NAME- (5 mg x kg-1 x d-1) treated infarcted groups for 25 days. Sham-operated rats served as controls. In the noninfarcted myocardium of the left ventricle (LV), MI raised aldosterone synthase mRNA (the terminal enzyme of aldosterone synthesis) by 2. 0-fold and the aldosterone level by 3.7-fold. Conversely, MI decreased 11beta-hydroxylase mRNA (the terminal enzyme of corticosterone synthesis) by 2.4-fold and the corticosterone level by 1.9-fold. MI also induced a 1.9-fold increase in cardiac angiotensin II level. Such cardiac regulations were completely prevented by treatment of the infarcted heart with losartan. The MI-induced collagen deposition in noninfarcted LV myocardium was prevented by 1.6-fold by both low and high doses of spironolactone and by 2.5-fold by losartan. In addition, norepinephrine level was unchanged in infarcted heart but was attenuated by both losartan and spironolactone treatments. CONCLUSIONS: MI is associated with tissue-specific activation of myocardial aldosterone synthesis. This increase is mediated primarily by cardiac angiotensin II via AT1-subtype receptor and may be involved in post-MI ventricular fibrosis and in control of tissue norepinephrine concentration.  (+info)

A case of aldosterone-producing adenoma with severe postoperative hyperkalemia. (34/2815)

It is known that some patients with primary aldosteronism show postoperative hyperkalemia, which is due to inability of the adrenal gland to secrete sufficient amounts of aldosterone. However, hyperkalemia is generally neither severe nor prolonged, in which replacement therapy with mineralocorticoid is seldom necessary. We report a case of a 46-year-old woman with an aldosterone-producing adenoma associated with severe postoperative hyperkalemia. After unilateral adrenalectomy, the patient showed episodes of severe hyperkalemia for four months, which required not only cation-exchange resin, but also mineralocorticoid replacement. Plasma aldosterone concentration (PAC) was low, although PAC was increased after rapid ACTH test. Histological examination indicated the presence of adrenocortical tumor and paradoxical hyperplasia of zona glomerulosa in the adjacent adrenal. Immunohistochemistry demonstrated that the enzymes involved in aldosterone synthesis, such as cholesterol side chain cleavage (P-450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), and 21-hydroxylase (P-450c21), or the enzyme involved in glucocorticoid synthesis, 11beta-hydroxylase (P-450c11beta), were expressed in the tumor, but they were completely absent in zona glomerulosa of the adjacent adrenal. These findings were consistent with the patterns of primary aldosteronism. Serum potassium level was gradually decreased with concomitant increase in PAC. These results suggest that severe postoperative hyperkalemia of the present case was attributable to severe suppression of aldosterone synthesis in the adjacent and contralateral adrenal, which resulted in slow recovery of aldosterone secretion. It is plausible that aldosterone synthesis of adjacent and contralateral adrenal glands is severely impaired in some cases with primary aldosteronism, as glucocorticoid synthesis in Cushing syndrome.  (+info)

sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial na+ channels. (35/2815)

The early phase of the stimulatory effect of aldosterone on sodium reabsorption in renal epithelia is thought to involve activation of apical sodium channels. However, the genes initiating this effect are unknown. We used a combination of polymerase chain reaction-based subtractive hybridization and differential display techniques to identify aldosterone-regulated immediate early genes in renal mineralocorticoid target cells. We report here that aldosterone rapidly increases mRNA levels of a putative Ser/Thr kinase, sgk (or serum- and glucocorticoid-regulated kinase), in its native target cells, i.e. in cortical collecting duct cells. The effect occurs within 30 min of the addition of aldosterone, is mediated through mineralocorticoid receptors, and does not require de novo protein synthesis. The full-length sequences of rabbit and mouse sgk cDNAs were determined. Both cDNAs show significant homology to rat and human sgk (88-94% at the nucleotide level, and 96-99% at the amino acid level). Coexpression of the mouse sgk in Xenopus oocytes with the three subunits of the epithelial Na+ channel results in a significantly enhanced Na+ current. These results suggest that sgk is an immediate early aldosterone-induced gene, and this protein kinase plays an important role in the early phase of aldosterone-stimulated Na+ transport.  (+info)

Ca-sensitive Na transport in sheep omasum. (36/2815)

Na transport across a preparation of sheep omasum was studied. All tissues exhibited a serosa-positive short-circuit current (Isc), with a range of 1-4 microeq. h-1. cm-2. A Michaelis-Menten-type kinetic was found between the Na concentration and the Isc (Michaelis-Menten constant for transport of Na = 6.7 mM; maximal transport capacity of Na = 4.16 microeq. h-1. cm-2). Mucosal amiloride (1 mM), phenamil (1 or 10 microM), or serosal aldosterone (1 microM for 6 h) did not change Isc. Removal of divalent cations (Ca and Mg) enhanced Isc considerably from 2.61 +/- 0.24 to a peak value of 11.18 +/- 1.1 microeq. h-1. cm-2. The peak Isc (overshoot) immediately declined to a plateau Isc of approximately 6-7 microeq. h-1. cm-2. Na flux measurements showed a close correlation between changes in Isc and Na transport. Transepithelial studies demonstrated that K, Cs, Rb, and Li are transported, indicating putative nonselective cation channels, which are inhibited by divalent cations (including Ca, Mg, Sr, Ba) and by (trivalent) La. Intracellular microelectrode recordings from the luminal side clearly showed changes of voltage divider ratio when mucosal divalent cations were removed. The obtained data support the assumption of a distinct electrogenic Na transport mechanism in sheep omasum.  (+info)

Sodium-free fluid ingestion decreases plasma sodium during exercise in the heat. (37/2815)

This study assessed whether replacing sweat losses with sodium-free fluid can lower the plasma sodium concentration and thereby precipitate the development of hyponatremia. Ten male endurance athletes participated in one 1-h exercise pretrial to estimate fluid needs and two 3-h experimental trials on a cycle ergometer at 55% of maximum O2 consumption at 34 degrees C and 65% relative humidity. In the experimental trials, fluid loss was replaced by distilled water (W) or a sodium-containing (18 mmol/l) sports drink, Gatorade (G). Six subjects did not complete 3 h in trial W, and four did not complete 3 h in trial G. The rate of change in plasma sodium concentration in all subjects, regardless of exercise time completed, was greater with W than with G (-2.48 +/- 2.25 vs. -0.86 +/- 1.61 mmol. l-1. h-1, P = 0.0198). One subject developed hyponatremia (plasma sodium 128 mmol/l) at exhaustion (2.5 h) in the W trial. A decrease in sodium concentration was correlated with decreased exercise time (R = 0.674; P = 0.022). A lower rate of urine production correlated with a greater rate of sodium decrease (R = -0. 478; P = 0.0447). Sweat production was not significantly correlated with plasma sodium reduction. The results show that decreased plasma sodium concentration can result from replacement of sweat losses with plain W, when sweat losses are large, and can precipitate the development of hyponatremia, particularly in individuals who have a decreased urine production during exercise. Exercise performance is also reduced with a decrease in plasma sodium concentration. We, therefore, recommend consumption of a sodium-containing beverage to compensate for large sweat losses incurred during exercise.  (+info)

Relation between severity of liver disease and renal oxygen consumption in patients with cirrhosis. (38/2815)

BACKGROUND: Worsening cirrhosis may lead to increased renal O2 metabolism caused by activation of neurohumoral antinatriuretic substances. AIMS: To evaluate the relation between the severity of liver disease, sodium excretion, and neurohumoral antinatriuretic substances on the one hand and renal O2 metabolism on the other in patients with cirrhosis. METHODS: Renal O2 consumption and haemodynamics as well as plasma concentrations of noradrenaline, renin, and aldosterone were measured. Investigations were performed in 14 patients with Pugh's grade A, 43 with grade B, and 29 with grade C liver disease. RESULTS: Renal O2 consumption significantly increased with the severity of cirrhosis (grade A, 8.9 (1.6); grade B, 15.5 (1.3); grade C, 18.0 (1.5) ml/min/m2). Plasma concentrations of noradrenaline, renin, and aldosterone significantly increased while mean arterial presssure and systemic vascular resistance significantly decreased with the severity of the disease. A significant inverse correlation was found between renal O2 consumption and sodium excretion. A significant direct correlation was found between plasma levels of noradrenaline and aldosterone on the one hand and renal O2 consumption on the other. Renal blood flow and the glomerular filtration rate did not differ significantly between patients with grade C and grade A or B disease. CONCLUSIONS: This study shows for the first time that, in patients with cirrhosis, worsening of the disease is associated with an increase in renal O2 consumption. The results suggest that increased renal O2 consumption is due to renal tubular sodium retention caused by increased levels of neurohumoral antinatriuretic substances. This neurohumoral activation is related to cirrhosis induced vasodilation.  (+info)

Maternal hypertension and progeny blood pressure: role of aldosterone and 11beta-HSD. (39/2815)

Epidemiological and experimental evidence suggests that gestational events modulate the level of blood pressure that will be "normal" for the individual as an adult. Glucocorticoid excess during gestation is associated with low birth weight, a large placenta, and adult hypertension in humans and animals. It has been proposed that the deficiency in placental 11beta-hydroxysteroid dehydrogenase activity in humans produces a gestational hormonal milieu, notwithstanding normal circulating levels of glucocorticoids, that predisposes the adult progeny to hypertension. Animal studies indicate that maternal hypertension, excess glucocorticoids, and hydroxysteroid dehydrogenase inhibition program adult blood pressure. Blood pressures of Sprague-Dawley rat dams were manipulated during gestation with continuous intracerebroventricular infusions of vehicle, aldosterone, 11alpha-hydroxyprogesterone, or carbenoxolone at doses known to produce hypertension with no renal effects or with subcutaneous infusions of larger, equally hypertensinogenic doses that produce systemic effects. Blood pressures of all treated dams were significantly greater (P<0.01) during gestation than those of the vehicle ICV control rats but not significantly different from each other. The blood pressures of both male and female progeny (n>/=6 per group, comprising representatives from at least 4 litters) were measured after 6 weeks of age. No significant difference was found in the blood pressure of the pups regardless of the maternal gestational blood pressure or treatment with an enzyme inhibitor, even after high-salt diet challenge.  (+info)

Valine 571 functions as a regional organizer in programming the glucocorticoid receptor for differential binding of glucocorticoids and mineralocorticoids. (40/2815)

The glucocorticoid receptor (GR) interacts specifically with glucocorticoids, whereas its closest relative, the mineralocorticoid receptor (MR), interacts with both glucocorticoids and mineralocorticoids, such as aldosterone. To investigate the mechanism underlying the glucocorticoid/mineralocorticoid specificity of the GR, we used a yeast model system to screen for GR ligand-binding domain mutants, substituted with MR residues in the segment 565-574, that can be efficiently activated by aldosterone. In all such increased activity mutants, valine 571 was replaced by methionine, even though most mutants also contained substitutions of other residues with their MR counterparts. Further analysis in yeast and COS-7 cells has revealed that the identity of residue 571 determines the behavior of other MR substituted residues in the 565-574 segment. Generally, MR substitutions in this region are only consistent with aldosterone binding if residue 571 is also replaced with methionine (MR conformation). If residue 571 is valine (GR conformation), most other MR substitution mutants drastically reduce interaction with both mineralocorticoid and glucocorticoid hormones. Based on these functional data, we hypothesize that residue 571 functions as a regional organizer involved in discriminating between glucocorticoid and mineralocorticoid hormones. We have used a molecular model of the GR ligand-binding domain in an attempt to interpret our functional data in structural terms.  (+info)