Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. (33/391)

Peppermint (Mentha x piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.  (+info)

Molecular cloning of acid-stable glucose isomerase gene from Streptomyces olivaceoviridis E-86 by a simple two-step PCR method, and its expression in Escherichia coli. (34/391)

Glucose isomerase (GI) from Streptomyces olivaceoviridis E-86 is a unique enzyme, very acid-stable with a large potential for corn sweetener industries. The gene encoding this unique enzyme was cloned by a simple two-step PCR method, and expressed in Escherichia coli. A single open reading frame consisting of 1164 base pairs (70.7 mol % of G + C content) that encoded a polypeptide composed of 388 amino acid residues (Mr 42,993) was found. The E. coli transformant carrying the gene overproduced the recombinant GI (rGI) and the enzyme was successfully expressed as a tetramer under the transcriptional control of the tac-promoter. The purified recombinant enzyme was indistinguishable from that of the authentic enzyme e.g. molecular weight, immunological properties, N-terminal amino acid sequences, subunit structures, and temperature and pH profiles. The relationships between structure and properties of the enzymes are also discussed.  (+info)

Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. (35/391)

Plants maintain cytosine methylation at CG and non-CG residues to control gene expression and genome stability. In a screen for Arabidopsis mutants that alter methylation and silencing of a densely methylated endogenous reporter gene, we recovered 11 loss-of-function alleles in the CMT3 chromomethylase gene. The cmt3 mutants displayed enhanced expression and reduced methylation of the reporter, particularly at non-CG cytosines. CNG methylation was also reduced at repetitive centromeric sequences. Thus, CMT3 is a key determinant for non-CG methylation. The lack of CMT homologs in animal genomes could account for the observation that in contrast to plants, animals maintain primarily CG methylation.  (+info)

Biosynthetic pathway of insect juvenile hormone III in cell suspension cultures of the sedge Cyperus iria. (36/391)

In most insect species, juvenile hormones regulate critical physiological processes such as metamorphosis and reproduction. In insects, these sesquiterpenoids are synthesized by retrocerebral endocrine organs, the corpora allata, via the classical mevalonate (MVA) pathway. One of these compounds, juvenile hormone III (JH III), has also been identified in the sedge Cyperus iria. In higher plants, biosynthesis of the sesquiterpenoid backbone may proceed through two distinct pathways: the MVA pathway or the 2C-methyl erythritol 4-phosphate pathway or through a combination of both pathways. Cell suspension cultures of C. iria were used to elucidate the biosynthetic pathway of JH III in the plant. Enzyme inhibition and labeling studies conclusively demonstrated that the biosynthesis of the sesquiterpenoid backbone of JH III proceeds via the MVA pathway. Inhibitor and precursor feeding studies also suggest that later steps of JH III biosynthesis in C. iria are similar to the insect pathway and that the final enzymatic reaction in JH III biosynthesis is catalyzed by a cytochrome P(450) monooxygenase.  (+info)

Cloning and characterization of a novel gene encoding L-ribose isomerase from Acinetobacter sp. strain DL-28 in Escherichia coli. (37/391)

The gene encoding a novel L-ribose isomerase (L-RI) from Acinetobacter sp. was cloned into Escherichia coli and nucleotide sequence was determined. The gene corresponded to an open reading frame of 747 bp that codes for a deduced protein of 249 amino acids, which showed no amino acid sequence similarity with any other sugar isomerases. After expression of the gene in E. coli using pUC118 the recombinant L-RI was purified to homogeneity using different chromatographic methods. The overall enzymatic properties of the purified recombinant L-RI were the same as those of the authentic L-RI. To our knowledge, this is the first time report concerning the L-RI gene.  (+info)

Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway. (38/391)

A Candida albicans mutant with mutations in the N-acetylglucosamine (GlcNAc) catabolic pathway gene cluster, including the GlcNAc-6-phosphate deacetylase (DAC1), glucosamine-6-phosphate deaminase (NAG1), and GlcNAc kinase (HXK1) genes, was not able to grow on amino sugars, exhibited highly attenuated virulence in a murine systemic candidiasis model, and was less adherent to human buccal epithelial cells in vitro. No germ tubes were formed by the mutant after induction with GlcNAc, but the mutant exhibited hyperfilamentation under stress-induced filamentation conditions. In addition, the GlcNAc catabolic pathway played a vital role in determining the colony phenotype. Our results imply that this pathway is very important because of its diverse links with pathways involved in virulence and morphogenesis of the organism.  (+info)

Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. (39/391)

Saccharomyces cerevisiae ferments hexoses efficiently but is unable to ferment xylose. When the bacterial enzyme xylose isomerase (XI) from Thermus thermophilus was produced in S. cerevisiae, xylose utilization and ethanol formation were demonstrated. In addition, xylitol and acetate were formed. An unspecific aldose reductase (AR) capable of reducing xylose to xylitol has been identified in S. cerevisiae. The GRE3 gene, encoding the AR enzyme, was deleted in S. cerevisiae CEN.PK2-1C, yielding YUSM1009a. XI from T. thermophilus was produced, and endogenous xylulokinase from S. cerevisiae was overproduced in S. cerevisiae CEN.PK2-1C and YUSM1009a. In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold. Deletion of the GRE3 gene combined with expression of the xylA gene from T. thermophilus on a replicative plasmid generated recombinant xylose utilizing S. cerevisiae strain TMB3102, which produced ethanol from xylose with a yield of 0.28 mmol of C from ethanol/mmol of C from xylose. None of the recombinant strains grew on xylose.  (+info)

Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. (40/391)

Comparative analysis of genome sequence data from mesophilic and hyperthermophilic micro-organisms has revealed a strong bias against specific thermolabile amino-acid residues (i.e. N and Q) in hyperthermophilic proteins. The N + Q content of class II xylose isomerases (XIs) from mesophiles, moderate thermophiles, and hyperthermophiles was examined. It was found to correlate inversely with the growth temperature of the source organism in all cases examined, except for the previously uncharacterized XI from Bacillus licheniformis DSM13 (BLXI), which had an N + Q content comparable to that of homologs from much more thermophilic sources. To determine whether BLXI behaves as a thermostable enzyme, it was expressed in Escherichia coli, and the thermostability and activity properties of the recombinant enzyme were studied. Indeed, it was optimally active at 70-72 degrees C, which is significantly higher than the optimal growth temperature (37 degrees C) of B. licheniformis. The kinetic properties of BLXI, determined at 60 degrees C with glucose and xylose as substrates, were comparable to those of other class II XIs. The stability of BLXI was dependent on the metallic cation present in its two metal-binding sites. The enzyme thermostability increased in the order apoenzyme < Mg2+-enzyme < Co2+-enzyme approximately Mn2+-enzyme, with melting temperatures of 50.3 degrees C, 53.3 degrees C, 73.4 degrees C, and 73.6 degrees C. BLXI inactivation was first-order in all conditions examined. The energy of activation for irreversible inactivation was also strongly influenced by the metal present, ranging from 342 kJ x mol(-1) (apoenzyme) to 604 kJ x mol(-1) (Mg2+-enzyme) to 1166 kJ x mol(-1) (Co2+-enzyme). These results suggest that the first irreversible event in BLXI unfolding is the release of one or both of its metals from the active site. Although N + Q content was an indicator of thermostability for class II XIs, this pattern may not hold for other sets of homologous enzymes. In fact, the extremely thermostable alpha-amylase from B. licheniformis was found to have an average N + Q content compared with homologous enzymes from a variety of mesophilic and thermophilic sources. Thus, it would appear that protein thermostability is a function of more complex molecular determinants than amino-acid content alone.  (+info)