Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. (25/27)

Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. The final specific activity of the purified enzyme was 1.12 micromol of NADH oxidized per min per mg of protein. The molecular weight of the native enzyme was determined to be 140,000. Sodium dodecyl sulfate-gel electrophoresis revealed a subunit of molecular weight 73,000. The optimum temperature and pH were 30 degrees C and 7.0, respectively. The enzyme was inactivated very rapidly at 70 degrees C. The enzyme required Mg2+ and thiamine pyrophosphate for maximal activity. Xylulose 5-phosphate was found to be the best substrate when formaldehyde was used as a glycoaldehyde acceptor. Erythrose 4-phosphate, glycolaldehyde, and formaldehyde were found to act as excellent substrates when xylulose 5-phosphate was used as a glycoaldehyde donor. The Kms for formaldehyde and xylulose 5-phosphate were 1.86 mM and 33.3 microM, respectively. The enzyme produced dihydroxyacetone from formaldehyde and xylulose 5-phosphate. The enzyme was found to be expressed only in cells grown on methanol and shared no immunological properties with the yeast dihydroxyacetone synthase.  (+info)

Effects of rapessed oil on activity of methylmalonyl-CoA carboxyltransferase in culture of Streptomyces fradiae. (26/27)

To investigate why more tylosin was produced when Streptomyces fradiae T1558 was cultured in a rapeseed oil medium than in a glucose or starch medium, we measured the activity of methylmalonyl-CoA carboxyltransferase (EC 2.1.3.1) and intracellular propionic acid. The activity of the enzyme, which catalyzes the formation of the precursor of tylosin, protylonolide, was 0.19 U/mg protein in 5 days of culture in rapeseed oil medium, which was 2.5- and 1.3-fold that with the glucose or starch medium, respectively. The intracellular propionic acid concentration was 1.2 g/g of dry weight, which was 4.3- and 2.1-fold that with the glucose or starch medium, respectively. The addition of propionic acid increased tylosin production in batch culture: when 0.2 g/l (final concentration) propionic acid was added to the glucose medium, 3.8 g/l tylosin was produced in 10 days of culture, 4.7-fold the amount without propionic acid. These findings suggest that in glucose medium, intracellular propionic acid is a limiting factor because of the low activity of methylmalonyl-CoA carboxyltransferase of the tylosin biosynthesis pathway.  (+info)

Regulation and physiological role of the DAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii. (27/27)

The physiological role of dihydroxyacetone synthase (DHAS) in Candida boidinii was evaluated at the molecular level. The DAS1 gene, encoding DHAS, was cloned from the host genome, and regulation of its expression by various carbon and nitrogen sources was analyzed. Western and Northern analyses revealed that DAS1 expression was regulated mainly at the mRNA level. The regulatory pattern of DHAS was similar to that of alcohol oxidase but distinct from that of two other enzymes in the formaldehyde dissimilation pathway, glutathione-dependent formaldehyde dehydrogenase and formate dehydrogenase. The DAS1 gene was disrupted in one step in the host genome (das1Delta strain), and the growth of the das1Delta strain in various carbon and nitrogen sources was compared with that of the wild-type strain. The das1Delta strain had completely lost the ability to grow on methanol, while the strain with a disruption of the formate dehydrogenase gene could survive (Y. Sakai et al., J. Bacteriol. 179:4480-4485, 1997). These and other experiments (e.g., those to determine the expression of the gene and the growth ability of the das1Delta strain on media containing methylamine or choline as a nitrogen source) suggested that DAS1 is involved in assimilation rather than dissimilation or detoxification of formaldehyde in the cells.  (+info)