Chronic ethanol exposure and protracted abstinence alter NMDA receptors in central amygdala. (9/84)

We recently reported that chronic ethanol treatment (CET) and early withdrawal (2-8 h) altered glutamatergic transmission at both pre- and postsynaptic sites in central nucleus of the amygdala (CeA). Acute ethanol (44 mM) inhibited the NMDA receptor (NMDAR)-mediated EPSCs (NMDA-EPSCs) more in CeA neurons from CET rats than from naive rats and also decreased paired-pulse facilitation (PPF) of NMDA-EPSCs only in CET rats. To determine whether these CET effects persisted after prolonged withdrawal, we recorded intracellularly in rat CeA slices and measured mRNA and protein expression of CeA NMDAR subunits from CET rats and those withdrawn from ethanol for 1 or 2 weeks. At 1 week withdrawal, acute ethanol decreased evoked NMDA-EPSC amplitudes and NMDA currents induced by exogenous NMDA ( approximately 20%) equally to that in naive rats, indicating that CET effects on postsynaptic mechanisms reversed 1 week after CET cessation. However, acute ethanol still decreased PPF of NMDA-EPSCs, indicating that the acute ethanol-induced increase in glutamate release in CeA seen in CET rats was still present at this time. CET also significantly increased mRNA levels of NR1 and NR2B NMDAR subunits compared to control rats. At 1 week withdrawal, mRNA levels for NR1 and NR2B subunits were significantly decreased. These changes reversed at 2 weeks withdrawal. In Western blots, a significant increase in protein for all three subunits occurred in CeA from CET rats, but not after 1 and 2 weeks of withdrawal. These data indicate that CET induces reversible neuroadaptations in synaptic function, gene expression, and protein composition of NMDAR at CeA synapses.  (+info)

Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: importance of catalase-mediated metabolism and the role of acetaldehyde. (10/84)

A series of experiments was conducted to investigate the locomotor effects of local injections of ethanol and the ethanol metabolite, acetaldehyde, into substantia nigra pars reticulata (SNr). Infusions of ethanol into SNr resulted in a dose-related increase in locomotor activity, with maximal effects at a dose of 1.4 micromol. Ethanol injected into a control site dorsal to substantia nigra failed to stimulate locomotion, and another inactive site was identified in brainstem areas posterior to substantia nigra. The locomotor effects of intranigral ethanol (1.4 micromol) were reduced by coadministration of 10 mg/kg sodium azide, a catalase inhibitor that acts to reduce the metabolism of ethanol into acetaldehyde in the brain. SNr infusions of acetaldehyde, which is the first metabolite of ethanol, also increased locomotion. Taken together, these results indicate that SNr is one of the sites at which ethanol and acetaldehyde may be acting to induce locomotor activity. These results are consistent with the hypothesis that acetaldehyde is a centrally active metabolite of ethanol, and provide further support for the idea that catalase activity is a critical step in the regulation of ethanol-induced motor activity. These studies have implications for understanding the brain mechanisms involved in mediating the ascending limb of the biphasic dose-response curve for the effect of ethanol on locomotor activity.  (+info)

Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on behavioral measures of impulsivity: alone and in combination with alcohol. (11/84)

The use of 3,4-methylenedioxymethamphetamine (MDMA) has frequently been associated with increased levels of impulsivity during abstinence. The effects of MDMA on measures of impulsivity, however, have not yet been studied during intoxication. The present study was designed to assess the acute effects of MDMA and alcohol, alone and in combination, on behavioral measures of impulsivity and risk-taking behavior. A total of 18 recreational users of MDMA entered a double-blind placebo-controlled six-way crossover study. The treatments consisted of MDMA 0, 75, and 100 mg with and without alcohol. Alcohol dosing was designed to achieve a peak blood alcohol concentration (BAC) of about 0.06 g/dl during laboratory testing. Laboratory tests of impulsivity were conducted between 1.5 and 2 h post-MDMA and included a stop-signal task, a go/no-go task, and the Iowa gambling task. MDMA decreased stop reaction time in the stop-signal task indicating increased impulse control. Alcohol increased the proportion of commission errors in the stop-signal task and the go/no-go task. Signal detection analyses of alcohol-induced commission errors indicated that this effect may reflect impairment of perceptual or attentive processing rather than an increase of motor impulsivity per se. Performance in the Iowa gambling task was not affected by MDMA and alcohol, but there was a nonsignificant tendency towards improvement following alcohol intake. None of the behavioral measures of impulsivity showed a MDMA x alcohol interaction effect. The lack of interaction indicated that the CNS stimulant effects of MDMA were never sufficient to overcome alcohol-induced impairment of impulse control or risk-taking behavior.  (+info)

The anxious amygdala: CREB signaling and predisposition to anxiety and alcoholism. (12/84)

The amygdala is believed to play a key role in assigning emotional significance to specific sensory input, and conditions such as anxiety, autism, stress, and phobias are thought to be linked to its abnormal function. Growing evidence has also implicated the amygdala in mediation of the stress-dampening properties of alcohol. In this issue of the JCI, Pandey and colleagues identify a central amygdaloid signaling pathway involved in anxiety-like and alcohol-drinking behaviors in rats. They report that decreased phosphorylation of cAMP responsive element-binding protein (CREB) resulted in decreased neuropeptide Y (NPY) expression in the central amygdala of alcohol-preferring rats, causing high anxiety-like behavior. Alcohol intake by these animals was shown to increase PKA-dependent CREB phosphorylation and thereby NPY expression, subsequently ameliorating anxiety-like behavior. These provocative data suggest that a CREB-dependent neuromechanism underlies high anxiety-like and excessive alcohol-drinking behavior.  (+info)

Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. (13/84)

Brain microvascular endothelial cells (BMVEC) connected by tight junctions (TJ) form a tight monolayer at the blood-brain barrier (BBB). We investigated the idea that BBB dysfunction seen in alcohol abuse is associated with oxidative stress stemming from ethanol (EtOH) metabolism in BMVEC. Exposure to EtOH induced catalytic activity/expression of EtOH-metabolizing enzymes, which paralleled enhanced generation of reactive oxygen species (ROS). EtOH-mediated oxidative stress led to activation of myosin light chain (MLC) kinase, phosphorylation of MLC and TJ proteins, decreased BBB integrity, and enhanced monocyte migration across BBB. Acetaldehyde or ROS donors mimicked changes induced by EtOH in BMVEC. Thus, oxidative stress resulting from alcohol metabolism in BMVEC can lead to BBB breakdown in alcohol abuse, serving as an aggravating factor in neuroinflammatory disorders.  (+info)

ADH4 gene variation is associated with alcohol dependence and drug dependence in European Americans: results from HWD tests and case-control association studies. (14/84)

The alcohol dehydrogenase (ADH) family constitutes one of the key sets of enzymes responsible for the oxidation of alcohol. The ADH4 gene, an important member of this family, is a functional and positional candidate for alcohol dependence. The present study aimed to investigate the relationship between ADH4 gene variation and alcohol dependence and drug dependence in European-Americans (EAs) and African-Americans (AAs). Seven single nucleotide polymorphisms (SNPs) spanning the ADH4 gene were genotyped in 365 healthy controls (317 EAs and 48 AAs) and 561 subjects (400 EAs and 161 AAs) affected with alcohol dependence and/or drug dependence (436 with alcohol dependence; 356 with drug dependence). Hardy-Weinberg equilibrium (HWE) for the genotype frequency distributions of these markers was tested in all phenotype groups to evaluate association between ADH4 gene variation and phenotypes and to fine-map the disease risk locus. The allele, genotype, and haplotype frequency distributions of these markers were compared between cases and controls to confirm the associations. The genotype frequency distributions of ADH4 markers were in HWE in EA controls, but were in Hardy-Weinberg disequilibrium (HWD) (ie, deviation from HWE) in EA cases. Among all markers, SNP2 (rs1042363) at exon 9 or SNP6 (rs1800759) at the promoter showed the greatest degree of HWD, among patients with either alcohol dependence or drug dependence. Significant differences between EA cases and controls were seen for genotype (10(-6)+info)

In vivo quantification of ethanol kinetics in rat brain. (15/84)

Proton magnetic resonance spectroscopy was used at 3T to measure the uptake and clearance of brain ethanol in rats after bolus intraperitoneal (i.p.) or intragastric (i.g.) alcohol injection, and to estimate the effects of acute alcohol on brain metabolites. The observation duration was 1-1.5 h with temporal resolution of alcohol sampling ranging from 4 s-4 min. The observed time course of alcohol brain concentration followed a consistent pattern characterized by a rapid absorption, an intermediate distribution, and a slower clearance that approached a linear decay. In a sample of eight healthy Wistar rats, the intercept of the linear clearance term, extrapolated back to the time of injection, correlated well with the administered dose per unit of lean body mass. Alcohol concentration estimation based on spectroscopically measured clearance was compared with blood alcohol levels from blood samples at the end of observation, and were in good agreement with the administered dose. Serial proton spectroscopy measurements provide a valid in vivo method for quantifying brain alcohol uptake and elimination kinetics in real time.  (+info)

Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. (16/84)

Wernicke's encephalopathy (WE) is characterized by lesions in thalamus, hypothalamus (including mammillary nuclei), and inferior colliculi, results in serious disabilities, has an etiology of thiamine deficiency, is treatable with thiamine, and occurs most commonly with alcoholism. Despite decades of study, whether alcohol exposure exacerbates the neuropathology or retards its resolution remains controversial. To examine patterns of brain damage and recovery resulting from thiamine deprivation with and without alcohol exposure, we conducted in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3 T in alcohol-preferring (P) rats, which had voluntarily consumed large amounts of alcohol before thiamine manipulation. A total of 18 adult male P rats (nine alcohol-exposed) received a thiamine-deficient diet for 2 weeks: 10 (five alcohol-exposed) received intraperitoneal (i.p.) pyrithiamine (PT) and eight (four alcohol-exposed) received i.p. thiamine supplementation. Neurological signs developed by day 14. Rats were scanned before thiamine depletion and 18 and 35 days after thiamine repletion. Two-dimensional J-resolved MRS single-voxel spectra with water reference were collected in a voxel subtending the thalamus; metabolite quantification was corrected for voxel tissue content. MRI identified significant enlargement of dorsal ventricles and increase in signal intensities in thalamus, inferior colliculi, and mammillary nuclei of PT compared with thiamine-treated (TT) groups from MRI 1-2, followed by significant normalization from MRI 2-3 in thalamus and colliculi, but not mammillary nuclei and lateral ventricles. Voxel-by-voxel analysis revealed additional hyperintense signal clusters in the dorsal and ventral hippocampus and enlargement of the fourth ventricle. MRS showed a significant decline and then partial recovery in thalamic N-acetylaspartate, a marker of neuronal integrity, in PT compared with TT rats, with no change detected in creatine, choline, or glutamate. PT rats with prior alcohol exposure exhibited attenuated recovery in the thalamus and arrested growth of the corpus callosum; further, two of the five alcohol-exposed PT rats died prematurely. Parenchymal and ventricular changes with thiamine manipulation concur with human radiological signs of WE. The enduring macrostructural and neurochemical abnormalities involving critical nodes of Papez circuit carry liabilities for development of amnesia and incomplete recovery from other cognitive and motor functions subserved by the affected neural systems.  (+info)