Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. (49/705)

BACKGROUND: Arsenite oxidase from Alcaligenes faecalis NCIB 8687 is a molybdenum/iron protein involved in the detoxification of arsenic. It is induced by the presence of AsO(2-) (arsenite) and functions to oxidize As(III)O(2-), which binds to essential sulfhydryl groups of proteins and dithiols, to the relatively less toxic As(V)O(4)(3-) (arsenate) prior to methylation. RESULTS: Using a combination of multiple isomorphous replacement with anomalous scattering (MIRAS) and multiple-wavelength anomalous dispersion (MAD) methods, the crystal structure of arsenite oxidase was determined to 2.03 A in a P2(1) crystal form with two molecules in the asymmetric unit and to 1.64 A in a P1 crystal form with four molecules in the asymmetric unit. Arsenite oxidase consists of a large subunit of 825 residues and a small subunit of approximately 134 residues. The large subunit contains a Mo site, consisting of a Mo atom bound to two pterin cofactors, and a [3Fe-4S] cluster. The small subunit contains a Rieske-type [2Fe-2S] site. CONCLUSIONS: The large subunit of arsenite oxidase is similar to other members of the dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes, particularly the dissimilatory periplasmic nitrate reductase from Desulfovibrio desulfuricans, but is unique in having no covalent bond between the polypeptide and the Mo atom. The small subunit has no counterpart among known Mo protein structures but is homologous to the Rieske [2Fe-2S] protein domain of the cytochrome bc(1) and cytochrome b(6)f complexes and to the Rieske domain of naphthalene 1,2-dioxygenase.  (+info)

In70 of plasmid pAX22, a bla(VIM-1)-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. (50/705)

An Achromobacter xylosoxydans strain showing broad-spectrum resistance to beta-lactams (including carbapenems) and aminoglycosides was isolated at the University Hospital of Verona (Verona, Italy). This strain was found to produce metallo-beta-lactamase activity and to harbor a 30-kb nonconjugative plasmid, named pAX22, carrying a bla(VIM-1) determinant inserted into a class 1 integron. Characterization of this integron, named In70, revealed an original array of four gene cassettes containing, respectively, the bla(VIM-1) gene and three different aminoglycoside resistance determinants, including an aacA4 allele, a new aph-like gene named aphA15, and an aadA1 allele. The aphA15 gene is the first example of an aph-like gene carried on a mobile gene cassette, and its product exhibits close similarity to the APH(3')-IIa aminoglycoside phosphotransferase encoded by Tn5 (36% amino acid identity) and to an APH(3')-IIb enzyme from Pseudomonas aeruginosa (38% amino acid identity). Expression of the cloned aphA15 gene in Escherichia coli reduced the susceptibility to kanamycin and neomycin as well as (slightly) to amikacin, netilmicin, and streptomycin. Characterization of the 5' and 3' conserved segments of In70 and of their flanking regions showed that In70 belongs to the group of class 1 integrons associated with defective transposon derivatives originating from Tn402-like elements. The structure of the 3' conserved segment indicates the closest ancestry with members of the In0-In2 lineage. In70, with its array of cassette-borne resistance genes, can mediate broad-spectrum resistance to most beta-lactams and aminoglycosides.  (+info)

Biologic and physical properties of succinylated and glycosylated Acinetobacter glutaminase-asparaginase. (51/705)

Acinetobacter glutaminase-asparaginase was chemically modified by succinylation and glycosylation with glycopeptides from human fibrin and gamma-globulin. These modifications markedly prolonged the half-lives of the enzyme in mice, rats, and rabbits. The plasma half-life in mice increased with decreasing isoelectric point. Glycosylation caused greater prolongation in rodents than succinylation. The kinetic properties of the modified enzymes were unchanged. Succinylation protected the enzyme from trypsin digestion. Glycosylated preparations had less heat inactivation than native and succinylated enzyme. Sedimentation equilibrium studies on a succinylated preparation showed reversible dissociation to a dimer (71, 400 g/mol) with an association constant of 1.3 times 10-6 liters/mol. This dissociation was identical with native enzyme, except for a 3% increase in molecular weight due to succinate groups. Sedimentation equilibrium studies on glycosylated preparations showed mixtures of molecular weight from 60, 000 to over 180, 000. Gel filtration and active enzyme sedimentation showed active polymers, but no active species smaller than tetramer.  (+info)

NreB from Achromobacter xylosoxidans 31A Is a nickel-induced transporter conferring nickel resistance. (52/705)

There are two distinct nickel resistance loci on plasmid pTOM9 from Achromobacter xylosoxidans 31A, ncc and nre. Expression of the nreB gene was specifically induced by nickel and conferred nickel resistance on both A. xylosoxidans 31A and Escherichia coli. E. coli cells expressing nreB showed reduced accumulation of Ni(2+), suggesting that NreB mediated nickel efflux. The histidine-rich C-terminal region of NreB was not essential but contributed to maximal Ni(2+) resistance.  (+info)

A novel C1-using denitrifier alcaligenes sp. STC1 and its genes for copper-containing nitrite reductase and azurin. (53/705)

A novel denitrifier Alcaligenes sp. STC1 was identified. The strain efficiently denitrifies under an atmosphere of 10% oxygen (O2) where Paracoccus denitrificans, one of the most studied aerobic denitrifiers, had less denitrifying activity, indicating that the strain has an O2-torelant denitrifying system. It denitrified by using C1-carbon sources such as formate and methanol as well as glucose, glycerol, and succinate. The genes for the copper-containing nitrite reductase and azurin of this C1-using denitrifier were cloned. Their predicted products of them were similar to those of their counterparts and the maximum similarities were 90% and 92%, respectively.  (+info)

Cloning, sequencing and mutagenesis of the genes for aromatic amine dehydrogenase from Alcaligenes faecalis and evolution of amine dehydrogenases. (54/705)

The nucleotide sequence of the aromatic amine utilization (aau) gene region from Alcaligenes faecalis contained nine genes (orf-1, aauBEDA, orf-2, orf-3, orf-4 and hemE) transcribed in the same direction. The aauB and aauA genes encode the periplasmic aromatic amine dehydrogenase (AADH) large and small subunit polypeptides, respectively, and were homologous to mauB and mauA, the genes for the large and small subunits of methylamine dehydrogenase (MADH). aauE and aauD are homologous to mauE and mauD and apparently carry out the same function of transport and folding of the small subunit polypeptide in the periplasm. No analogues of the mauF, mauG, mauL, mauM and mauN genes responsible for biosynthesis of tryptophan tryptophylquinone (the prosthetic group of amine dehydrogenases) were found in the aau cluster. orf-2 was predicted to encode a small periplasmic monohaem c-type cytochrome. No biological function can be assigned to polypeptides encoded by orf-1, orf-3 and orf-4 and mutations in these genes appeared to be lethal. Mutants generated by insertions into mauD were not able to use phenylethylamine, tyramine and tryptamine as a source of carbon and phenylethylamine, 3'-hydroxytyramine (dopamine) and tyramine as a source of nitrogen, indicating that AADH is the only enzyme involved in utilization of primary amines in A. faecalis. AADH genes are present in Alcaligenes xylosoxydans subsp. xylosoxydans, but not in other beta- and gamma-proteobacteria. Phylogenetic analysis of amine dehydrogenases (MADH and AADH) indicated that AADH and MADH evolutionarily diverged before separation of proteobacteria into existing subclasses.  (+info)

Unstable generalized transduction in Achromobacter. (55/705)

Six auxotrophic markers of a halotolerant collagenolytic strain of Achromobacter were transduced by four alpha hages. Abortive transduction was also demonstrated. The generalized transduction system is unusual as the transductants were unstable, characteristic of transduction by lysogeny. The Achromobacter strain is a cryptic lysogen for alpha and purified transductants were either sensitive or resistant to alpha. Purified clones from four resistant transductants and one sensitive transductant liberated phage spontaneously. The host ranges of these spontaneous phage differed from that of the alpha phage used for the transduction experiment. Some initially resistant transductants became simi-sensitive to alpha (efficiency to plating) e.o.p. (10minus-1 to 10minus-2) after repeated cloning.  (+info)

Identification of strains of Alcaligenes and Agrobacterium by a polyphasic approach. (56/705)

The number of stable discriminant biochemical characters is limited in the genera Alcaligenes and Agrobacterium, whose species are consequently difficult to distinguish from one another by conventional tests. Moreover, genomic studies have recently drastically modified the nomenclature of these genera; for example, Alcaligenes xylosoxidans was transferred to the genus Achromobacter in 1998. Twenty-five strains of Achromobacter xylosoxidans, three strains of an Agrobacterium sp., five strains of an Alcaligenes sp., and four unnamed strains belonging to the Centers for Disease Control and Prevention group IVc-2 were examined. These strains were characterized by conventional tests, including biochemical tests. The assimilation of 99 carbohydrates, organic acids, and amino acids was studied by using Biotype-100 strips, and rRNA gene restriction patterns were obtained with the automated Riboprinter microbial characterization system after cleavage of total DNA with EcoRI or PstI restriction endonuclease. This polyphasic approach allowed the two subspecies of A. xylosoxidans to be clearly separated. Relationships between five strains and the Ralstonia paucula type strain were demonstrated. Likewise, three strains were found to be related to the Ochrobactrum anthropi type strain. We showed that substrate assimilation tests and automated ribotyping provide a simple, rapid, and reliable means of identifying A. xylosoxidans subspecies and that these two methods can be used as alternative methods to characterize unidentified strains rapidly when discriminant biochemical characters are missing.  (+info)