Factors associated with pilot fatalities in work-related aircraft crashes--Alaska, 1990-1999. (49/465)

Despite its large geographic area, Alaska has only 12,200 miles of public roads, and 90% of the state's communities are not connected to a highway system. Commuter and air-taxi flights are essential for transportation of passengers and delivery of goods, services, and mail to outlying communities (Figure 1). Because of the substantial progress in decreasing fatalities in the fishing and logging industries, aviation crashes are the leading cause of occupational death in Alaska. During 1990-1999, aircraft crashes in Alaska caused 107 deaths among workers classified as civilian pilots. This is equivalent to 410 fatalities per 100,000 pilots each year, approximately five times the death rate for all U.S. pilots and approximately 100 times the death rate for all U.S. workers. As part of a collaborative aviation safety initiative that CDC's National Institute for Occupational Safety and Health (NIOSH) is implementing with the Federal Aviation Administration (FAA), the National Transportation Safety Board (NTSB), and the National Weather Service, CDC analyzed data from NTSB crash reports to determine factors associated with pilot fatalities in work-related aviation crashes in Alaska. This report summarizes the result of this analysis, which found that the following factors were associated with pilot fatalities: crashes involving a post-crash fire, flights in darkness or weather conditions requiring instrument use, crashes occurring away from an airport, and crashes in which the pilot was not using a shoulder restraint. Additional pilot training, improved fuel systems that are less likely to ignite in crashes, and company policies that discourage flying in poor weather conditions might help decrease pilot fatalities. More detailed analyses of crash data, collaborations with aircraft operators to improve safety, and evaluation of new technologies are needed.  (+info)

Increased use of cigarettes, alcohol, and marijuana among Manhattan, New York, residents after the September 11th terrorist attacks. (50/465)

The September 11, 2001, terrorist attacks were the largest human-made disaster in the United States since the Civil War. Studies after earlier disasters have reported rates of psychological disorders in the acute postdisaster period. However, data on postdisaster increases in substance use are sparse. A random digit dial telephone survey was conducted to estimate the prevalence of increased cigarette smoking, alcohol consumption, and marijuana use among residents of Manhattan, New York City, 5-8 weeks after the attacks. Among 988 persons included, 28.8% reported an increase in use of any of these three substances, 9.7% reported an increase in smoking, 24.6% reported an increase in alcohol consumption, and 3.2% reported an increase in marijuana use. Persons who increased smoking of cigarettes and marijuana were more likely to experience posttraumatic stress disorder than were those who did not (24.2% vs. 5.6% posttraumatic stress disorder for cigarettes; 36.0% vs. 6.6% for marijuana). Depression was more common among those who increased than for those who did not increase cigarette smoking (22.1 vs. 8.2%), alcohol consumption (15.5 vs. 8.3%), and marijuana smoking (22.3 vs. 9.4%). The results of this study suggest a substantial increase in substance use in the acute postdisaster period after the September 11th attacks. Increase in use of different substances may be associated with the presence of different comorbid psychiatric conditions.  (+info)

Occupational exposures to air contaminants at the World Trade Center disaster site--New York, September-October, 2001. (51/465)

Amid concerns about the fires and suspected presence of toxic materials in the rubble pile following the collapse of the World Trade Center (WTC) buildings on September 11, 2001, the New York City Department of Health (NYCDOH) asked CDC for assistance in evaluating occupational exposures at the site. CDC's National Institute for Occupational Safety and Health (NIOSH) collected general area (GA) and personal breathing zone (PBZ) air samples for numerous potential air contaminants. This report summarizes the results of the assessment, which indicate that most exposures, including asbestos, did not exceed NIOSH recommended exposure limits (RELs) or Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs). One torch cutter was overexposed to cadmium; another worker was overexposed to carbon monoxide (CO) while cutting metal beams with an oxyacetylene torch or a gasoline-powered saw, and two more were possibly overexposed to CO. NIOSH recommended that workers ensure adequate on-site ventilation when using gas-powered equipment and use rechargeable, battery-powered equipment when possible.  (+info)

Cosmic rays: are air crew at risk? (52/465)

This article reviews the current knowledge about cosmic rays and their possible effects on health of air crew, discusses research directions necessary for establishing and measuring the risks, and highlights the need for physicians and air crew to be informed, despite the inconclusiveness of the evidence. A literature review of computerised medical and scientific databases was carried out. Recent reports highlighting increased incidence of cancer among airline pilots and cabin crew have renewed concerns about possible exposure to harmful levels of cosmic radiation at altitude. Such low energy ionising radiation has been shown to cause double stranded DNA deletions and induce genomic instability in human chromosomes. In the field of microelectronics, cosmic rays have been shown to cause "hard" and "soft" errors in computer microchips, in a dose-response fashion with increasing altitude. Pregnant cabin crew members are of special concern. Although the epidemiological evidence is still inconclusive, we know enough to warrant a cautionary stance. The European Union (EU) leads the way in legislation.  (+info)

Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. (53/465)

The explosion and collapse of the World Trade Center (WTC) was a catastrophic event that produced an aerosol plume impacting many workers, residents, and commuters during the first few days after 11 September 2001. Three bulk samples of the total settled dust and smoke were collected at weather-protected locations east of the WTC on 16 and 17 September 2001; these samples are representative of the generated material that settled immediately after the explosion and fire and the concurrent collapse of the two structures. We analyzed each sample, not differentiated by particle size, for inorganic and organic composition. In the inorganic analyses, we identified metals, radionuclides, ionic species, asbestos, and inorganic species. In the organic analyses, we identified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, pesticides, phthalate esters, brominated diphenyl ethers, and other hydrocarbons. Each sample had a basic pH. Asbestos levels ranged from 0.8% to 3.0% of the mass, the PAHs were > 0.1% of the mass, and lead ranged from 101 to 625 microg/g. The content and distribution of material was indicative of a complex mixture of building debris and combustion products in the resulting plume. These three samples were composed primarily of construction materials, soot, paint (leaded and unleaded), and glass fibers (mineral wool and fiberglass). Levels of hydrocarbons indicated unburned or partially burned jet fuel, plastic, cellulose, and other materials that were ignited by the fire. In morphologic analyses we found that a majority of the mass was fibrous and composed of many types of fibers (e.g., mineral wool, fiberglass, asbestos, wood, paper, and cotton). The particles were separated into size classifications by gravimetric and aerodynamic methods. Material < 2.5 microm in aerodynamic diameter was 0.88-1.98% of the total mass. The largest mass concentrations were > 53 microm in diameter. The results obtained from these samples can be used to understand the contact and types of exposures to this unprecedented complex mixture experienced by the surviving residents, commuters, and rescue workers directly affected by the plume from 11 to 12 September and the evaluations of any acute or long-term health effects from resuspendable dust and smoke to the residents, commuters, and local workers, as well as from the materials released after 11 September until the fires were extinguished. Further, these results support the need to have the interior of residences, buildings, and their respective HVAC systems professionally cleaned to reduce long-term residential risks before rehabitation.  (+info)

Physiology and behavior of dogs during air transport. (54/465)

Twenty-four beagles were used to measure physiological and behavioral reactions to air transport. Each of 3 groups of 4 sedated (with 0.5 mg/kg body weight of acepromazine maleate) and 4 non-sedated (control) dogs was flown on a separate flight between Montreal, Quebec, and Toronto, Ontario, after being transported by road from Quebec City to Montreal. Saliva and blood samples were taken before ground and air transport and after air transport. The heart rate was monitored during the whole experiment except during ground transport, and behavior was monitored by video during air transport. Sedation did not affect any of the variables measured. The mean plasma cortisol concentration was significantly higher (P < 0.05) after ground transport than at baseline (225.3 vs 134.5 nmol/L); the mean salivary cortisol concentration was significantly higher (P < 0.05) after both ground and air transport than at baseline (16.2 and 14.8, respectively, vs 12.6 nmol/L). The mean neutrophil count was significantly higher (P < 0.05) after both ground and air transport than at baseline (80.6 and 81.4, respectively, vs 69.5 per 100 white blood cells), whereas the mean lymphocyte count was significantly lower (P < 0.05) (13.2 and 13.7, respectively, vs 22.4 per 100 white blood cells). Loading and unloading procedures caused the largest increase in heart rate. On average, the dogs spent more than 50% of the time lying down, and they remained inactive for approximately 75% of the time, except during take-off. These results suggest that transportation is stressful for dogs and that sedation with acepromazine, at the dosage and timing used, does not affect the physiological and behavioral stress responses of dogs to air transport.  (+info)

Risk assessment of high-energy chemicals by in vitro toxicity screening and quantitative structure-activity relationships. (55/465)

Hydrazine propellants pose a substantial operational concern to the U.S. Air Force and to the aerospace industry because of their toxicity. In our continuing efforts to develop methods for the prediction of the toxicological response to such materials, we have measured in vitro toxicity endpoints for a series of high-energy chemicals (HECs) that were recently proposed as propellants. The HECs considered are structurally diverse and can be classified into four chemical types (hydrazine-based, amino-based, triazoles, and a quaternary ammonium salt), although most are hydrazine derivatives. We measured the following endpoints in primary cultures of isolated rat hepatocytes: mitochondrial function (MTT), lactate dehydrogenase leakage (LDH), generation of reactive oxygen species (ROS), and total glutathione content (GSH). In several instances, effective concentrations (EC) were indeterminate, and only lower limits to the measured endpoints could be ascertained. Using molecular descriptors calculated with a semiempirical molecular orbital method, quantitative structure-activity relationships (QSARs) were derived for MTT (EC25) and for GSH (EC50). Correlation coefficients for 2- and 3-parameter QSARs of about 0.9 enable us to predict the toxicity for similar compounds. Furthermore, except in one case, predicted EC values for the uncertain endpoints were consistent with experiment. Descriptors comprising the QSARs for MTT were consistent with the biophysical mechanism of toxic response found experimentally for hydrazine derivatives. Application of our derived QSARs will assist in predicting toxicity for newly proposed propellants.  (+info)

A pilot with pain in his leg: thigh abscess caused by Salmonella enterica serotype Brandenburg. (56/465)

Salmonella enterica serotype Brandenburg is one of the more uncommon serotypes isolated from patients with gastroenteritis. Few cases of extraintestinal infections with serotype Brandenburg have been documented. The first case of a serotype Brandenburg-dependent thigh abscess originating from an atherosclerotic pseudoaneurysm of the femoral artery is reported.  (+info)