Effect of synchronized intermittent mandatory ventilation on respiratory workload in infants after cardiac surgery. (41/314)

BACKGROUND: Synchronized intermittent mandatory ventilation (SIMV) is commonly used in infants and adults. However, few investigations have examined how SIMV reduces respiratory workload in infants. The authors evaluated how infants' changing respiratory patterns when reducing SIMV rate increased respiratory load. The authors also investigated whether SIMV reduces infant respiratory workload in proportion to the rate of mandatory breaths and which rate of SIMV provides respiratory workloads similar to those after tracheal extubation. METHODS: When 11 post-cardiac surgery infants aged 2-11 months were to be weaned with SIMV, the authors randomly applied five levels of mandatory breathing: 0, 5, 10, 15, and 20 breaths/min. All patients underwent ventilation with SIMV mode: pressure control ventilation, 16 cm H2O; inspiratory time, 0.8 s; triggering sensitivity, 0.6 l/min; and positive endexpiratory pressure, 3 cm H2O. After establishing steady-state conditions at each SIMV rate, arterial blood gases were analyzed, and esophageal pressure, airway pressure, and airflow were measured. Inspiratory work of breathing, pressure-time products, and the negative deflection of esophageal pressure were calculated separately for assisted breaths, for spontaneous breaths, and for total breaths per minute. Measurements were repeated after extubation. RESULTS: As the SIMV rate decreased, although minute ventilation and arterial carbon dioxide tension were maintained at constant values, spontaneous breathing rate and tidal volume increased. Work of breathing, pressure-time products, and negative deflection of esophageal pressure increased as the SIMV rate decreased. Work of breathing and pressure-time products after extubation were intermediate between those at a SIMV rate of 5 breaths/min and those at 0 breaths/min. CONCLUSION: When the load to breathing was increased progressively by decreasing the SIMV rate in post-cardiac surgery infants, tidal volume and spontaneous respiratory rate both increased. In addition, work of breathing and pressure-time products were increased depending on the SIMV rate.  (+info)

Nitrogen at raised pressure interacts with the GABA(A) receptor to produce its narcotic pharmacological effect in the rat. (42/314)

BACKGROUND: Strong evidence supports the concept that conventional anesthetics, including inhalational agents and inert gases, such as xenon and nitrous oxide, interact directly with ion channel neurotransmitter receptors. However, there is no evidence that nitrogen, which only exhibits narcotic potency at increased pressure, may act by a similar mechanism. METHODS: We compared the inhibitory and sedative effects of gamma-aminobutyric acid (GABA) and nitrogen pressure on locomotor activity and striatal dopamine release in freely moving rats and investigated the pharmacologic properties of the GABA-induced and nitrogen pressure-induced narcotic action using the highly selective competitive GABA(A) receptor antagonist bicuculine. RESULTS: Intracerebroventricular GABA infusion up to 60 micromol or exposure to nitrogen pressure up to 3 MPa decreased to a similar extent striatal dopamine release (r2= 0.899, df = 4, P < 0.01) and locomotor activity (r2 = 0.996, df = 28, P < 0.001). However, both agents only showed small effects on striatal dopamine release, reducing dopamine currents by only 12-13% at sedative concentrations. Pretreatment with bicuculline at 0.5, 1, and 2.5 pmol reduced the sedative action of GABA on locomotor activity by 10, 20, and 41%, respectively. Bicuculline in the nanomole range at 1, 2.5, and 5 nmol but not in the picomole range reduced the sedative action of nitrogen pressure by 5, 37, and 73%, respectively. Schild plot analysis is consistent with the fact that bicuculline is a competitive antagonist of both GABA and nitrogen at pressure. CONCLUSIONS: These results suggest (1) that the presynaptic effects of both GABA and nitrogen pressure on striatal dopamine transmission are modest and not mainly involved in their sedative action and (2) that nitrogen at increased pressure may interact directly with the GABA(A) receptor. However, because the antagonistic effect of bicuculline on nitrogen sedation only occurred at much higher bicuculline concentrations than seen with GABA, it is suggested that nitrogen does not compete for the same site as GABA.  (+info)

Influence of gender on upper airway mechanics: upper airway resistance and Pcrit. (43/314)

It has been proposed that the difference in sleep apnea prevalence is related to gender differences in upper airway anatomy and physiology. To explain the prevalence difference, we hypothesized that men would have an increased upper airway resistance and increased critical closing pressure (Pcrit) compared with women. In protocol 1, resistance at two points, fixed flow of 0.2 l/s (RL) and peak flow (Rpk), was measured in 33 men and 27 women without significant sleep-disordered breathing. We found no difference in either RL (-6.9 +/- 5.9 vs. -8.6 +/- 8.2 cmH2O) or Rpk (-9.3 +/- 6.8 vs. -10.0 +/- 11.9 cmH2O) between the men and women. A multiple linear regression to correct for the effects of age and body mass index confirmed that gender had no effect on resistance. In protocol 2, Pcrit was measured in eight men and eight women without sleep-disordered breathing. We found no difference in Pcrit (-10.4 +/- 3.1 vs. -8.8 +/- 2.7 cmH2O) between men and women. We conclude that there are no significant differences in collapsibility between men and women. We present an unifying hypothesis to explain the divergent findings of gender differences in upper airway physiology.  (+info)

Suppression of high-pressure-induced hemolysis of human erythrocytes by preincubation at 49 degrees C. (44/314)

When human erythrocytes were preincubated at 37-52 degrees C under atmospheric pressure before exposure to a pressure of 200 MPa at 37 degrees C, the value of hemolysis was constant (about 43%) up to 45 degrees C but became minimal at 49 degrees C. The results from anti-spectrin antibody-entrapped red ghosts, spectrin-free vesicles, and N-(1-pyrenyl)iodoacetamide-labeled ghosts suggest that the denaturation of spectrin is associated with such behavior of hemolysis at 49 degrees C. The vesicles released at 200 MPa by 49 degrees C-preincubated erythrocytes were smaller than those released by the treatment at 49 degrees C or 200 MPa alone. The size of vesicles released at 200 MPa was independent of preincubation temperature up to 45 degrees C, and the vesicles released from 49 degrees C-preincubated erythrocytes became smaller with increasing pressure up to 200 MPa. Thus, hemolysis and vesiculation under high pressure are greatly affected by the conformation of spectrin before compression. Since spectrin remains intact up to 45 degrees C, the compression of erythrocytes at 200 MPa induces structural changes of spectrin followed by the release of large vesicles and hemolysis. On the other hand, in erythrocytes that are undergoing vesiculation due to spectrin denaturation at 49 degrees C, compression produces smaller vesicles, so that the hemolysis is suppressed.  (+info)

Effects of neck flexion and mouth opening on inspiratory flow dynamics in awake humans. (45/314)

Phrenic nerve stimulation (PNS) can assess airflow dynamics of the upper airway (UA) during wakefulness in man. Using PNS, we aimed to assess the impact of neck flexion and mouth opening in promoting UA unstability. Measurements were made during nasal breathing in seven healthy subjects (ages = 23-39 yr; one woman). Surface diaphragm electromyogram, esophageal pressure referenced to mask pressure, and flow were recorded during diaphragm twitches with neck in neutral position and mouth closed and then with neck flexion and/or mouth opening. Twitches always exhibited a flow-limited pattern. Flow-limiting driving pressure (Pd) and peak Pd were increased by neck flexion (P < 0.01) without significant change in the corresponding flows. UA resistances at these flow values were higher with the neck flexed (P < 0.05). Mouth opening alone did not exert any significant influence. We conclude that the position of the neck has a discernible impact on the flow behavior through the nonphasically active UA faced with a negative Pd.  (+info)

Interdependence of flow between lobes reduces maximal emptying postresection in dogs. (46/314)

The effect of pulmonary resection on the maximal emptying of the remaining lobes was examined in an open-chest preparation in normal canine lungs and in a unilobar papain emphysema model. The objectives were to determine whether, compared with when both lungs were deflated (BL), maximal emptying of the normal lower lobes or the emphysematous right lower lobe would be altered 1) when acute pneumonectomy of the contralateral lung was performed (OL) and 2) when the lower lobe deflated alone (LA). The alveolar capsule technique was used to measure alveolar pressures (Palv) at 75, 50, and 30% lobar vital capacity (VC). During forced deflation, the maximal rates of deflation (dPalv/dt) and flows (lobarV(max)) of the lower lobes were determined under the three different conditions. The Pitot-static tube technique was used to measure intrabronchial pressures and to estimate bronchial area and compliance in which values were obtained at the same central airway during the conditions studied. The results showed that, compared with BL and OL, dPalv/dt and lobar V(max) decreased during LA (P < 0.05). These findings were due to a reduction in bronchial area during LA that limited flow at a lower maximal value compared with BL. This decrease in area appeared to be due to a change in bronchial pressure area behavior that resulted in a smaller bronchial area during LA for similar transmural pressures between conditions. There were no differences in findings between normal and emphysematous lobes. This study suggested that removal of lobes may alter the pressure area behavior of central airways. Possible mechanisms considered were differences in axial tension between conditions, negative effort dependence, or parenchymal-bronchial interdependence that may be relevant to understanding the dynamic collapsibility of central as well as intraparenchymal airways.  (+info)

Use of dynamic negative airway pressure (DNAP) to assess sedative-induced upper airway obstruction. (47/314)

BACKGROUND: Traditional methods of assessing ventilatory effects of sedative agents do not measure their propensity to cause upper airway obstruction (UAO). The primary objective of this study was to develop a method, using dynamic negative airway pressure (DNAP), for replicating UAO during deep sedation. METHODS: A state of deep sedation (defined as an Observer Assessment of Alertness and Sedation score of 3 and a bispectral index < 80) was attained in 10 healthy volunteers, aged 19-41, using midazolam. Volunteers breathed through a chamber connected to a regulated source of negative pressure that was gradually adjusted downward to produce UAO based on maximal inspiratory flow. The study consisted of three phases: A control phase while awake, a study phase during midazolam deep sedation, and a recovery phase after flumazenil administration. RESULTS: During the control phase no subject demonstrated airway obstruction at negative pressures to -30-cm H2O. All subjects exhibited complete UAO during DNAP episodes while sedated. Negative pressures required to cause complete UAO (Pcrit) ranged from -2 to -14 cm H2O. After administration of flumazenil, all subjects attained full consciousness within 5 min and did not demonstrate UAO at negative pressures to -30-cm H2O. CONCLUSIONS: Dynamic Negative Airway Pressure is a useful method for provoking midazolam-induced UAO, and may potentially be used to compare the potential for different sedatives and patient factors to cause UAO. Flumazenil was completely effective in reversing the potential for midazolam to cause UAO.  (+info)

Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system. (48/314)

We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.  (+info)