(1/301) Influence of crossdrafts on the performance of a biological safety cabinet.

A biological safety cabinet was tested to determine the effect of crossdrafts (such as those created by normal laboratory activity or ventilation) upon the ability of the cabinet to protect both experiments and investigators. A simple crossdraft, controllable from 50 to 200 feet per min (fpm; 15.24 to 60.96 m/min), was created across the face of the unit. Modifications of standardized procedures involving controlled bacterial aerosol challenges provided stringent test conditions. Results indicated that, as the crossflow velocities exceeded 100 fpm, the ability of the cabinet to protect either experiments or investigators decreased logarithmically with increasing crossdraft speed. Because 100 fpm is an airspeed easily achieved by some air conditioning and heating vents (open windows and doorways may create velocities far in excess of 200 fpm), the proper placement of a biological safety cabinet within the laboratory--away from such disruptive air currents--is essential to satisfactory cabinet performance.  (+info)

(2/301) Neural mapping of direction and frequency in the cricket cercal sensory system.

Primary mechanosensory receptors and interneurons in the cricket cercal sensory system are sensitive to the direction and frequency of air current stimuli. Receptors innervating long mechanoreceptor hairs (>1000 microm) are most sensitive to low-frequency air currents (<150 Hz); receptors innervating medium-length hairs (900-500 microm) are most sensitive to higher frequency ranges (150-400 Hz). Previous studies demonstrated that the projection pattern of the synaptic arborizations of long hair receptor afferents form a continuous map of air current direction within the terminal abdominal ganglion (). We demonstrate here that the projection pattern of the medium-length hair afferents also forms a continuous map of stimulus direction. However, the afferents from the long and medium-length hair afferents show very little spatial segregation with respect to their frequency sensitivity. The possible functional significance of this small degree of spatial segregation was investigated, by calculating the relative overlap between the long and medium-length hair afferents with the dendrites of two interneurons that are known to have different frequency sensitivities. Both interneurons were shown to have nearly equal anatomical overlap with long and medium hair afferents. Thus, the differential overlap of these interneurons with the two different classes of afferents was not adequate to explain the observed frequency selectivity of the interneurons. Other mechanisms such as selective connectivity between subsets of afferents and interneurons and/or differences in interneuron biophysical properties must play a role in establishing the frequency selectivities of these interneurons.  (+info)

(3/301) Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.  (+info)

(4/301) Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats.

The discharge profiles of identified abducens, accessory abducens, and orbicularis oculi motoneurons have been recorded extra- and intracellularly in alert behaving cats during spontaneous, reflexively evoked, and classically conditioned eyelid responses. The movement of the upper lid and the electromyographic activity of the orbicularis oculi muscle also were recorded. Animals were conditioned by short, weak air puffs or 350-ms tones as conditioned stimuli (CS) and long, strong air puffs as unconditioned stimulus (US) using both trace and delayed conditioning paradigms. Motoneurons were identified by antidromic activation from their respective cranial nerves. Orbicularis oculi and accessory abducens motoneurons fired an early, double burst of action potentials (at 4-6 and 10-16 ms) in response to air puffs or to the electrical stimulation of the supraorbital nerve. Orbicularis oculi, but not accessory abducens, motoneurons fired in response to flash and tone presentations. Only 10-15% of recorded abducens motoneurons fired a late, weak burst after air puff, supraorbital nerve, and flash stimulations. Spontaneous fasciculations of the orbicularis oculi muscle and the activity of single orbicularis oculi motoneurons that generated them also were recorded. The activation of orbicularis oculi motoneurons during the acquisition of classically conditioned eyelid responses happened in a gradual, sequential manner. Initially, some putative excitatory synaptic potentials were observed in the time window corresponding to the CS-US interval; by the second to the fourth conditioning session, some isolated action potentials appeared that increased in number until some small movements were noticed in eyelid position traces. No accessory abducens motoneuron fired and no abducens motoneuron modified their discharge rate for conditioned eyelid responses. The firing of orbicularis oculi motoneurons was related linearly to lid velocity during reflex blinks but to lid position during conditioned responses, a fact indicating the different neural origin and coding of both types of motor commands. The power spectra of both reflex and conditioned lid responses showed a dominant peak at approximately 20 Hz. The wavy appearance of both reflex and conditioned eyelid responses was clearly the result of the high phasic activity of orbicularis oculi motor units. Orbicularis oculi motoneuron membrane potentials oscillated at approximately 20 Hz after supraorbital nerve stimulation and during other reflex and conditioned eyelid movements. The oscillation seemed to be the result of both intrinsic (spike afterhyperpolarization lasting approximately 50 ms, and late depolarizations) and extrinsic properties of the motoneuronal pool and of the circuits involved in eye blinks.  (+info)

(5/301) Demographic variation in cancer in relation to industrial and environmental influence.

Mortality data (183,064 deaths in a 30-year period, 1940-1969) by sex and three ethnic groups (white excluding Spanish-surnamed, nonwhite, and Spanish-surnamed) in 15 regions within the city (Houston), grouped around the air pollution sample collection stations have been analyzed. Valid contrast studies were possible in only one region within the city for all three groups and in six regions for white excluding Spanish-surnamed and nonwhite. There is evidence that the environmental factors of exposure over time to air and industrial pollutants in Houston has had a demonstrable effect in increasing regional mortality from cancer of the respiratory tract as well as from all other diseases and conditions of the respiratory tract and heart disease. This study points out the need for mutually sustained collaboration of effort of the scientific and industrial communities to redirect their attention and research efforts to the exploration of the carcinogenic potential of the microchemical environment.  (+info)

(6/301) The aerodynamics and hydrodynamics of plants.

Because they grow away from their substratum to compete for light, plants have to withstand hydrodynamic or aerodynamic drag. Both water and land plants reconfigure in response to this drag, and this is presumed to reduce the risk of mechanical failure. However, there is little unequivocal evidence of drag reduction in large trees as a result of reconfiguration. Land plants must also transport water internally to their tissues, and many have developed xylem tracheids and vessels that help speed up this process. Recent evidence that tree height is limited by water supply suggests that water transport efficiency must be a crucial element in tree design. However, the resistance of many parts of the xylem is still unknown. More focused work is urgently required to shed light on the evolution and ecology of plants in relation to the flow of fluids.  (+info)

(7/301) Airborne infection in a fully air-conditioned hospital. I. Air transfer between rooms.

Measurements have been made of the extent of air exchange between patient rooms in a fully air-conditioned hospital using a tracer-gas method. When the rooms were ventilated at about six air changes per hour, had an excess airflow through the doorway of about 0.1 m.3/sec. and the temperature difference between rooms and corridor was less than 0.5 degrees C., concentrations of the tracer in rooms close to that in which it was being liberated were 1000-fold less than that in the source room. This ratio fell to about 200-fold in the absence of any excess airflow through the doorways. Considerable dilution took place along the corridors so that the concentration fell by around 10-fold for every 10 m. of corridor.  (+info)

(8/301) Airborne infection in a fully air-conditioned hospital. II. Transfer of airborne particles between rooms resulting from the movement of air from one room to another.

Experiments were conducted simultaneously with gas and particle tracers to determine the relative loss of particles between source and recipient sites in the hospital ward units. The magnitude of this loss could be accounted for by the assumption of sedimentation from well-mixed air masses during the time required for movement between source and recipients sites. As a consequence of this loss the degree of isolation between patient rooms for airborne particles was between 4 and 25 times greater than that for gaseous contamination, which reflects the actual transport of air between the rooms. The design and construction of portable spinning-disk particle generators suitable for field studies is discussed.  (+info)