Sidekick-1 is upregulated in glomeruli in HIV-associated nephropathy. (33/170)

Infection of podocytes by HIV-1 induces unique changes in phenotype, which contribute to the pathogenesis of glomerular disease in HIV-associated nephropathy (HIVAN). The host genetic pathways altered by HIV-1 infection that are responsible for these phenotypic changes are largely unknown. For identifying such pathways, representational difference analysis was performed comparing cDNA from HIV-1 transgenic podocytes with nontransgenic controls. In this way, a gene named sidekick-1 (sdk-1) was cloned, a transmembrane protein of the Ig superfamily that is highly upregulated in HIV-1 transgenic podocytes. Sdk-1 and its ortholog, sidekick-2 (sdk-2), were recently shown to guide axonal terminals to specific synapses in developing neurons. Their presence and role in other organs, including the kidney, has not been described. The current study demonstrates developmental expression of both sdk-1 and sdk-2 and a tight spatial and temporal regulation of these genes in kidney. During nephrogenesis, sidekick expression was observed first in ureteric bud and ureteric bud-derived tissues in a pattern similar to other genes known to play important roles in branching morphogenesis. In adult murine renal tissue, sidekick proteins were seen in glomeruli at low levels, and expression of sdk-1 was greatly upregulated in diseased HIV-1 transgenic mouse kidneys. In a human HIVAN kidney biopsy, sidekick expression was increased in glomeruli in a pattern consistent with the mouse model. It is proposed that the dysregulation of sdk-1 protein may play an important role in HIVAN pathogenesis.  (+info)

Definition of the critical domains required for homophilic targeting of mouse sidekick molecules. (34/170)

Sidekick-1, a cell adhesion molecule of the immunoglobulin superfamily, is up-regulated in glomerular podocytes in the collapsing glomerulopathy of HIV-associated nephropathy (HIVAN). Sidekick-1 and its ortholog sidekick-2 have also been shown to function as neuronal targeting molecules, guiding developing neurons to specific synapses. In the current work, we overexpress mouse sidekick-1 and -2 in HEK 293 T cells in order to characterize their binding specificities. Cells transiently transfected with either sidekick-1 or -2 cDNA formed separate aggregates when mixed together, demonstrating that sidekicks are homophilic adhesion molecules. The transfection of the short splice variant (lacking the first two Ig domains) or a construct encoding sidekick-1 with the second Ig domain deleted both resulted in nearly abolished adhesion. A beta-sheet strand peptide containing the sequence QLVILA corresponding to an amino acid sequence in the second Ig domain of sidekick-1 showed specific interaction with the recombinant first Ig domain-His protein of sidekick-1. Cells expressing a mutant sidekick-1 where the binding sequence QLVILA is deleted failed to mediate significant adhesion. Furthermore, cells transfected with a chimeric sidekick, where the first two Ig domains of sidekick-2 are replaced with the corresponding two Ig domains of sidekick-1, form aggregates with sidekick-1-transfected cells. The reverse chimera, where the first two Ig domains of sidekick-2 are substituted onto sidekick-1, was similarly able to form aggregates with sidekick-2-transfected cells. These results establish that the first and second Ig domains of sidekick-1 and -2 are necessary and sufficient to mediate and target homophilic adhesion, and the QLVILA sequence is critical to the interaction. Understanding these functional domains has widespread implications in normal development and HIVAN pathogenesis.  (+info)

NF-kappaB regulates Fas-mediated apoptosis in HIV-associated nephropathy. (35/170)

Renal parenchymal injury in HIV-associated nephropathy (HIVAN) is characterized by epithelial proliferation, dedifferentiation, and apoptosis along the entire length of the nephron. Although apoptotic cell death in HIVAN has been well documented, the mechanism for HIV-induced apoptosis is poorly understood. Whether the epithelial apoptosis in HIVAN is mediated by NF-kappaB-activated Fas ligand expression was investigated here. In human HIVAN and HIV-1 transgenic mouse kidney specimens, the expression of Fas receptor and ligand proteins were markedly upregulated on epithelium in diseased glomerular and tubulointerstitial compartments when compared with normal. Podocyte cell lines that were derived from HIV-1 transgenic mice showed a similar upregulation of Fas receptor expression and de novo expression of Fas ligand by semiquantitative reverse transcription-PCR and Western blotting. In cultured podocytes, cross-linking of the Fas receptor to mimic ligand binding induced caspase 8 activity and apoptosis in both normal and HIVAN podocytes. Because constitutive NF-kappaB activity has been demonstrated in HIVAN epithelia, evidence for transcriptional control of the Fas ligand expression by NF-kappaB was sought. With the use of cultured podocytes, expression of a Fas ligand promoter reporter plasmid was higher in HIVAN podocytes, indicating increased transcriptional activity. In addition, chromatin immunoprecipitation assays were performed to demonstrate that p65-containing (RelA) complexes bound the Fas ligand promoter and that suppression of activated NF-kappaB with a peptide inhibitor could reduce the expression of Fas ligand mRNA in HIVAN podocytes. These results suggest that NF-kappaB may regulate Fas-mediated apoptosis in HIVAN by controlling the expression of Fas ligand in renal epithelium.  (+info)

Highly active antiretroviral therapy and the epidemic of HIV+ end-stage renal disease. (36/170)

The rise in the number of patients with HIV-associated nephropathy and HIV-infection with end-stage renal disease (HIV+ ESRD) continues to be a substantial concern for the ESRD program. In order to assess the impact of highly active antiretroviral therapy (HAART) on the progression of patients with AIDS to the development of ESRD and to project the prevalence of HIV+ ESRD through 2020, a mathematical model of the dynamics of HIV+ infection in the ESRD population was developed. Epidemiologic data on AIDS and HIV+ ESRD among black individuals in the United States were obtained since 1991 from the Centers for Disease Control and Prevention and US Renal Data System, respectively. The model was constructed to predict the prevalence of HIV+ ESRD incorporating the current rate of growth in AIDS prevalence. Two possible trends were considered: linear AIDS growth and exponential AIDS growth. The likely effectiveness of HAART in slowing progression to HIV+ ESRD was estimated from the best fit of the model to the data after 1995, when HAART was introduced. The model was then used to evaluate recent data and to project the prevalence of HIV+ ESRD through 2020. The model suggested that HAART has reduced the rate of progression from AIDS to HIV+ ESRD by 38%. The model projected an increase in HIV+ ESRD prevalence in the future as a result of the increase in the AIDS population among black individuals. This increase was predicted even assuming a 95% reduction in the progression from AIDS to HIV+ ESRD. Despite the potential benefit of HAART, the prevalence of HIV+ ESRD in the United States is expected to rise in the future as a result of the expansion of the AIDS population among black individuals. It is concluded that prevention of progression to ESRD should focus on early antiretroviral treatment of HIV-infected patients who have evidence of HIV-associated nephropathy.  (+info)

Persistent NF-kappaB activation in renal epithelial cells in a mouse model of HIV-associated nephropathy. (37/170)

Human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) is caused, in part, by direct infection of kidney epithelial cells by HIV-1. In the spectrum of pathogenic host-virus interactions, abnormal activation or suppression of host transcription factors is common. NF-kappaB is a necessary host transcription factor for HIV-1 gene expression, and it has been shown that NF-kappaB activity is dysregulated in many naturally infected cell types. We show here that renal glomerular epithelial cells (podocytes) expressing the HIV-1 genome, similar to infected immune cells, also have a dysregulated and persistent activation of NF-kappaB. Although podocytes produce p50, p52, RelA, RelB, and c-Rel, electrophoretic mobility shift assays and immunocytochemistry showed a predominant nuclear accumulation of p50/RelA-containing NF-kappaB dimers in HIV-1-expressing podocytes compared with normal. In addition, the expression level of a transfected NF-kappaB reporter plasmid was significantly higher in HIVAN podocytes. The mechanism of NF-kappaB activation involved increased phosphorylation of IkappaBalpha, resulting in an enhanced turnover of the IkappaBalpha protein. There was no evidence for regulation by IkappaBbeta or the alternate pathway of NF-kappaB activation. Altered activation of this key host transcription factor likely plays a role in the well-described cellular phenotypic changes observed in HIVAN, such as proliferation. Studies with inhibitors of proliferation and NF-kappaB suggest that NF-kappaB activation may contribute to the proliferative mechanism in HIVAN. In addition, because NF-kappaB regulates many aspects of inflammation, this dysregulation may also contribute to disease severity and progression through regulation of proinflammatory processes in the kidney microenvironment.  (+info)

Role of ubiquitin-like protein FAT10 in epithelial apoptosis in renal disease. (38/170)

Dysregulated apoptosis of renal tubular epithelial cells (RTEC) is an important component of the pathogenesis of several renal diseases, including HIV-associated nephropathy (HIVAN), the most common cause of chronic kidney failure in HIV-infected patients. In HIVAN, RTEC become infected by HIV-1 in a focal distribution, and HIV-1 infection has been shown to induce apoptosis in vitro. In microarray studies that used a novel renal tubular epithelial cell line from a patient with HIVAN, it was found that the ubiquitin-like protein FAT10 is one of the most upregulated genes in HIV-infected cells. Previously, FAT10 was shown to induce apoptosis in murine fibroblasts. The expression of FAT10 in HIVAN and the ability of FAT10 to induce apoptosis in human RTEC therefore were studied. This study revealed that FAT10 expression is induced after infection of RTEC by HIV-1 and that expression of FAT10 induces apoptosis in RTEC in vitro. Moreover, it was found that inhibition of endogenous FAT10 expression abrogated HIV-induced apoptosis of RTEC. Immunohistochemical studies demonstrated increased FAT10 expression in a murine model of HIVAN, in HIVAN biopsy samples, and in autosomal dominant polycystic kidney disease, another renal disease that is characterized by cystic tubular enlargement and epithelial apoptosis. These results suggest a novel role for FAT10 in epithelial apoptosis, which is an important component of the pathogenesis of many renal diseases.  (+info)

HIV-associated renal diseases and highly active antiretroviral therapy-induced nephropathy. (39/170)

Renal disease is becoming an increasingly prevalent entity in human immunodeficiency virus (HIV)-infected patients; it occurs in a variety of clinical settings and is associated with histopathological changes. HIV-related renal impairment can present as acute or chronic kidney disease; it can be caused directly or indirectly by HIV and/or by drug-related effects that are directly nephrotoxic or lead to changes in renal function by inducing metabolic vaculopathy and renal damage. Acute renal failure is frequently caused by the toxic effects of antiretroviral therapy or nephrotoxic antimicrobial substances used in the treatment of opportunistic infections. Chronic renal disease can be caused by multiple pathophysiological mechanisms, leading to HIV-associated nephropathy, a form of collapsing focal glomerulosclerosis, thrombotic microangiopathy, and various forms of immune complex glomerulonephritis. The increase in life expectancy and alteration of lipid metabolism due to receipt of highly active antiretroviral therapy are expected to result in an increased prevalence of diabetes and hypertension and, thus, to secondary diabetic and hypertensive renal damage. Antiretroviral agents, such as indinavir and tenofovir, have been associated with nephrotoxic drug effects that have been shown to be reversible in most cases. In this article, we review the current knowledge about acute and chronic HIV-associated renal disease, metabolic alterations and related nephropathies, and toxic drug effects of combination antiretroviral pharmacotherapy.  (+info)

HIV type 1 RNA level as a clinical indicator of renal pathology in HIV-infected patients. (40/170)

To determine the value of human immunodeficiency virus type 1 (HIV-1) RNA level in distinguishing HIV-associated nephropathy from non-HIV-associated nephropathy renal pathological conditions, we retrospectively compared renal histopathological findings for 86 HIV-infected patients according to HIV-1 RNA levels. We found that HIV-associated nephropathy was unlikely among patients with HIV-1 RNA levels <400 copies/mL. Hypertensive vascular disease surpassed HIV-associated nephropathy as the most common renal pathological finding among the entire cohort. HIV-1 RNA level did not correlate with renal survival.  (+info)