Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. (57/637)

Tyrosinase is responsible for the molting process in insects, undesirable browning of fruits and vegetables, and coloring of skin, hair, and eyes in animals. To clarify the mechanism of the depigmenting property of hydroxystilbene compounds, inhibitory actions of oxyresveratrol and its analogs on tyrosinases from mushroom and murine melanoma B-16 have been elucidated in this study. Oxyresveratrol showed potent inhibitory effect with an IC(50) value of 1.2 microm on mushroom tyrosinase activity, which was 32-fold stronger inhibition than kojic acid, a depigmenting agent used as the cosmetic material with skin-whitening effect and the medical agent for hyperpigmentation disorders. Hydroxystilbene compounds of resveratrol, 3,5-dihydroxy-4'-methoxystilbene, and rhapontigenin also showed more than 50% inhibition at 100 microm on mushroom tyrosinase activity, but other methylated or glycosylated hydroxystilbenes of 3,4'-dimethoxy-5-hydroxystilbene, trimethylresveratrol, piceid, and rhaponticin did not inhibit significantly. None of the hydroxystilbene compounds except oxyresveratrol exhibited more than 50% inhibition at 100 microm on l-tyrosine oxidation by murine tyrosinase activity; oxyresveratrol showed an IC(50) value of 52.7 microm on the enzyme activity. The kinetics and mechanism for inhibition of mushroom tyrosinase exhibited the reversibility of oxyresveratrol as a noncompetitive inhibitor with l-tyrosine as the substrate. The interaction between oxyresveratrol and tyrosinase exhibited a high affinity reflected in a K(i) value of 3.2-4.2 x 10(-7) m. Oxyresveratrol did not affect the promoter activity of the tyrosinase gene in murine melanoma B-16 at 10 and 100 microm. Therefore, the depigmenting effect of oxyresveratrol works through reversible inhibition of tyrosinase activity rather than suppression of the expression and synthesis of the enzyme. The number and position of hydroxy substituents seem to play an important role in the inhibitory effects of hydroxystilbene compounds on tyrosinase activity.  (+info)

Anti-inflammatory compounds from the bitter mushroom, Sarcodon scabrosus. (58/637)

A bioassay-guided purification procedure from the methanol extract of Sarcodon scabrosus led to the isolation of several anti-inflammatory compounds: sarcodonin A (1) and G (2), and related compounds (3, 4 and 5). We named these related compounds neosarcodonin A (3), B (4) and C (5) and elucidated their structures on the basis of spectral data. Topical application of each of these compounds to mouse ears suppressed TPA-induced inflammation. Neosarcodonin C (5) exhibited the highest activity and inhibited the TPA-induced edema on mouse ears by up to 87% with a 200-microg application.  (+info)

Mushroom tyrosinase inhibition activity of some chromones. (59/637)

Currently, aloesin is used in the cosmetic industry as a whitening agent because it inhibits tyrosinase activity. Aloesin is a C-glycosylated chromone compound isolated from aloe, and it is difficult to synthesize because of C-glycosyl moiety in the molecule. The purpose of this study is to search for a new chromone compound which is easy to synthesize and which posesses stronger tyrosinase inhibitory activity than aloesin. Fourteen chromone derivatives were synthesized and screened for their mushroom-tyrosinase inhibitory activity. 5-Methyl-7-methoxy-2-(2'-benzyl-3'-oxobutyl)chromone (15) showed the strongest activity among tested compounds. Its activity was not only stronger than aloesin, but also stronger than arbutin and kojic acid. The kinetic analysis revealed a competitive inhibition of 15 with tyrosinase for the L-tyrosine binding site.  (+info)

The white-line-in-agar test is not specific for the two cultivated mushroom associated pseudomonads, Pseudomonas tolaasii and Pseudomonas "reactans". (60/637)

A sharply defined white line in vitro forms between the pathogenic form of Pseudomonas tolaasii and another Pseudomonas bacterium, referred to as "reactans". This interaction has been considered as highly specific. However, results presented in this study rise doubt about the strict specificity of this interaction, as some other pseudomonads, associated with the cultivated mushroom Agaricus bisporus, also yielded a white line precipitate when they were streaked towards Pseudomonas tolaasii LMG 2342T. Moreover, some Finnish isolates inducing brown blotch symptoms on mushrooms like P. tolaasii(T), produced a typical white precipitate when streaked towards P. "reactans" LMG5329, even though phenotypical and genotypical features exclude these isolates from the species P. tolaasii. We propose that the white-line-in-agar (WLA) test should no longer be considered as an unequivocal diagnostic trait of P. tolaasii.  (+info)

New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. (61/637)

Two edible mushrooms, Pleurotus eryngii and Panellus serotinus, have been investigated chemically. Two new sterols, 5alpha,9alpha-epidioxy-8alpha,14alpha-epoxy-(22E)-ergosta-6,22-dien-3beta-ol (1) and 3beta,5alpha-dihydroxyergost-7-en-6-one (2), have been isolated from P. eryngii, together with six known ones (3-8). Compound 1 was also isolated from P. serotinus. The structures of the new compounds were elucidated on the basis of their spectral data.  (+info)

Psathyrella velutina Mushroom Lectin Exhibits High Affinity toward Sialoglycoproteins Possessing Terminal N-Acetylneuraminic Acid alpha 2,3-Linked to Penultimate Galactose Residues of Trisialyl N-Glycans. Comparison with other sialic acid-specific lectins. (62/637)

A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.  (+info)

Effect of maitake (Grifola frondosa) D-fraction on the control of the T lymph node Th-1/Th-2 proportion. (63/637)

We have already reported that the D-Fraction, a beta-glucan extracted from the fruiting body of the maitake mushroom (Grifola frondosa), activates cellular immunity and expresses anti-tumor effects. In this study we investigated the anti-tumor functions of D-Fraction in relation to its control of the balance between T lymphocyte subsets Th-1 and Th-2. D-Fraction decreased the activation of B cells and potentiated the activation of helper T cells, resulting in enhanced cellular immunity. It also induced the production of interferon (IFN)-gamma, interleukin (IL)-12 p70, and IL-18 by whole spleen cells and lymph node cells, but suppressed that of IL-4. These results suggest that D-Fraction establishes Th-1 dominance which induces cellular immunity in the population that was Th-2 dominant due to carcinoma.  (+info)

Cloning and characterization of the 5'-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. (64/637)

The oxalate-degrading enzyme, oxalate decarboxylase (OXDC), was purified and characterized from Flammulina velutipes, a basidiomycetous fungus [Mehta and Datta (1991) J. Biol. Chem. 266, 23548-23553]. The cDNA cloning and analyses revealed that OXDC transcription was induced by oxalic acid. However, in this report, we show that OXDC transcription is induced by low pH, not by oxalate. To understand the regulatory mechanism of OXDC expression, we have cloned and analysed a 580-bp genomic fragment from the 5'-flanking region of the OXDC gene. Sequence analysis showed the presence of several eukaryotic transcription factor binding motifs within the -580 bp of the upstream region. Electrophoretic-mobility-shift assays with partially purified cell extracts revealed specific binding of a factor in acid-induced, but not in uninduced, extracts. Furthermore, DNase I protection assays using the partially purified fraction from oxalic acid-induced extract revealed a footprint of a 13-bp sequence 5'GCGGGGTCGCCGA3', termed low pH responsive element (LPRE), corresponding to the -287 to -275 bp region of the OXDC promoter. Our results suggest that in F. velutipes cells, activation of OXDC transcription in response to low pH is mediated by the binding of a novel transcription factor through the LPRE site in the OXDC promoter.  (+info)