(1/2523) On the neural correlates of visual perception.

Neurological findings suggest that the human striate cortex (V1) is an indispensable component of a neural substratum subserving static achromatic form perception in its own right and not simply as a central distributor of retinally derived information to extrastriate visual areas. This view is further supported by physiological evidence in primates that the finest-grained conjoined representation of spatial detail and retinotopic localization that underlies phenomenal visual experience for local brightness discriminations is selectively represented at cortical levels by the activity of certain neurons in V1. However, at first glance, support for these ideas would appear to be undermined by incontrovertible neurological evidence (visual hemineglect and the simultanagnosias) and recent psychophysical results on 'crowding' that confirm that activation of neurons in V1 may, at times, be insufficient to generate a percept. Moreover, a recent proposal suggests that neural correlates of visual awareness must project directly to those in executive space, thus automatically excluding V1 from a related perceptual space because V1 lacks such direct projections. Both sets of concerns are, however, resolved within the context of adaptive resonance theories. Recursive loops, linking the dorsal lateral geniculate nucleus (LGN) through successive cortical visual areas to the temporal lobe by means of a series of ascending and descending pathways, provide a neuronal substratum at each level within a modular framework for mutually consistent descriptions of sensory data. At steady state, such networks obviate the necessity that neural correlates of visual experience project directly to those in executive space because a neural phenomenal perceptual space subserving form vision is continuously updated by information from an object recognition space equivalent to that destined to reach executive space. Within this framework, activity in V1 may engender percepts that accompany figure-ground segregations only when dynamic incongruities are resolved both within and between ascending and descending streams. Synchronous neuronal activity on a short timescale within and across cortical areas, proposed and sometimes observed as perceptual correlates, may also serve as a marker that a steady state has been achieved, which, in turn, may be a requirement for the longer time constants that accompany the emergence and stability of perceptual states compared to the faster dynamics of adapting networks and the still faster dynamics of individual action potentials. Finally, the same consensus of neuronal activity across ascending and descending pathways linking multiple cortical areas that in anatomic sequence subserve phenomenal visual experiences and object recognition may underlie the normal unity of conscious experience.  (+info)

(2/2523) Neural mapping of direction and frequency in the cricket cercal sensory system.

Primary mechanosensory receptors and interneurons in the cricket cercal sensory system are sensitive to the direction and frequency of air current stimuli. Receptors innervating long mechanoreceptor hairs (>1000 microm) are most sensitive to low-frequency air currents (<150 Hz); receptors innervating medium-length hairs (900-500 microm) are most sensitive to higher frequency ranges (150-400 Hz). Previous studies demonstrated that the projection pattern of the synaptic arborizations of long hair receptor afferents form a continuous map of air current direction within the terminal abdominal ganglion (). We demonstrate here that the projection pattern of the medium-length hair afferents also forms a continuous map of stimulus direction. However, the afferents from the long and medium-length hair afferents show very little spatial segregation with respect to their frequency sensitivity. The possible functional significance of this small degree of spatial segregation was investigated, by calculating the relative overlap between the long and medium-length hair afferents with the dendrites of two interneurons that are known to have different frequency sensitivities. Both interneurons were shown to have nearly equal anatomical overlap with long and medium hair afferents. Thus, the differential overlap of these interneurons with the two different classes of afferents was not adequate to explain the observed frequency selectivity of the interneurons. Other mechanisms such as selective connectivity between subsets of afferents and interneurons and/or differences in interneuron biophysical properties must play a role in establishing the frequency selectivities of these interneurons.  (+info)

(3/2523) Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats.

Repetitive ectopic discharges from injured afferent nerves play an important role in initiation and maintenance of neuropathic pain. Gabapentin is effective for treatment of neuropathic pain but the sites and mechanisms of its antinociceptive actions remain uncertain. In the present study, we tested a hypothesis that therapeutic doses of gabapentin suppress ectopic afferent discharge activity generated from injured peripheral nerves. Mechanical allodynia, induced by partial ligation of the sciatic nerve in rats, was determined by application of von Frey filaments to the hindpaw. Single-unit afferent nerve activity was recorded proximal to the ligated sciatic nerve site. Intravenous gabapentin, in a range of 30 to 90 mg/kg, significantly attenuated allodynia in nerve-injured rats. Furthermore, gabapentin, in the same therapeutic dose range, dose-dependently inhibited the ectopic discharge activity of 15 injured sciatic afferent nerve fibers through an action on impulse generation. However, the conduction velocity and responses of 12 normal afferent fibers to mechanical stimulation were not affected by gabapentin. Therefore, this study provides electrophysiological evidence that gabapentin is capable of suppressing the ectopic discharge activity from injured peripheral nerves. This action may contribute, at least in part, to the antiallodynic effect of gabapentin on neuropathic pain.  (+info)

(4/2523) Varying the degree of single-whisker stimulation differentially affects phases of intrinsic signals in rat barrel cortex.

Using intrinsic signal optical imaging (ISI), we have shown previously that the point spread of evoked activity in the rat barrel cortex in response to single-whisker stimulation encompasses a surprisingly large area. Given that our typical stimulation consists of five deflections at 5 Hz, the large area of evoked activity might have resulted from repetitive stimulation. Thus in the present study, we use ISI through the thinned skull to determine whether decreasing the degree of single-whisker stimulation decreases the area of the cortical point spread. We additionally outline a protocol to quantify stimulus-related differences in the temporal characteristics of intrinsic signals at a fine spatial scale. In 10 adult rats, whisker C2 was stimulated randomly with either one or five deflections delivered in a rostral-to-caudal fashion. Each deflection consisted of a 0.5-mm displacement of the whisker as measured at the point of contact, 15 mm from the snout. The number of whisker deflections did not affect the area or peak magnitude of the cortical point spread based on the intrinsic signal activity occurring from 0.5 up to 1.5 s poststimulus onset. In contrast, the magnitude and time course of intrinsic signal activity collected after 1.5-s poststimulus onset did reflect the difference in the degree of stimulation. Thus decreasing the degree of stimulation differentially affected the early and late phases of the evoked intrinsic signal response. The implications of the present results are discussed in respect to probable differences in the signal source underlying the early versus later phases of evoked intrinsic signals.  (+info)

(5/2523) Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat.

In this investigation we have estimated the afferent contribution to the generation of activity in the knee and ankle extensor muscles during walking in decerebrate cats by loading and unloading extensor muscles, and by unilateral deafferentation of a hind leg. The total contribution of afferent feedback to extensor burst generation was estimated by allowing one hind leg to step into a hole in the treadmill belt on which the animal was walking. In the absence of ground support the level of activity in knee and ankle extensor muscles was reduced to approximately 70% of normal. Activity in the ankle extensors could be restored during the "foot-in-hole" trials by selectively resisting extension at the ankle. Thus feedback from proprioceptors in the ankle extensor muscles probably makes a large contribution to burst generation in these muscles during weight-bearing steps. Similarly, feedback from proprioceptors in knee extensor appears to contribute substantially to the activation of knee extensor muscles because unloading and loading these muscles, by lifting and dropping the hindquarters, strongly reduced and increased, respectively, the level of activity in the knee extensors. This conclusion was supported by the finding that partial deafferentation of one hind leg by transection of the L4-L6 dorsal roots reduced the level of activity in the knee extensors by approximately 50%, but did not noticeably influence the activity in ankle extensor muscles. However, extending the deafferentation to include the L7-S2 dorsal roots decreased the ankle extensor activity. We conclude that afferent feedback contributes to more than one-half of the input to knee and ankle extensor motoneurons during the stance phase of walking in decerebrate cats. The continuous contribution of afferent feedback to the generation of extensor activity could function to automatically adjust the intensity of activity to meet external demands.  (+info)

(6/2523) Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses To object texture and weights.

Three monkeys were trained to lift and hold a test object within a 12- to 25-mm position window for 1 s. The activity of single neurons was recorded during performance of the task in which both the weight and surface texture of the object were systematically varied. Whenever possible, each cell was tested with three weights (15, 65, and 115 g) and three textures (smooth metal, fine 200 grit sandpaper, and rough 60 grit sandpaper). Of 386 cells recorded in 3 monkeys, 45 cells had cutaneous receptive fields on the index or thumb or part of the thenar eminence and were held long enough to be tested in all 9 combinations of texture and weight. Recordings were made for the entire anterior-posterior extent of the thumb and index finger areas in somatosensory cortex including area 7b. However, the statistical analysis required a selection of only those cells for which nine complete recording conditions were available limiting the sample to cells in areas 2, 5, and 7b. Significant differences in the grip force accompanied 98% of the changes in texture and 78% of the changes in weight. Increasing the object weight also increased the force tangential to the skin surface as measured by the load or lifting force. The peak discharge during lifting was judged to be the most sensitive index of cell activity and was analyzed with a two-way analysis of variance (ANOVA). In addition, peak cell discharge was normalized to allow comparisons among different combinations of texture and weight as well as comparisons among different neurons. Overall, the peak firing frequency of 87% of the cells was significantly modulated by changes in object texture, but changes in object weight affected the peak activity of only 58% of the cells. Almost all (17/18, 94%) of the static cells were influenced by the object texture, and 81% of the dynamic cells that were active only briefly at grip and lift onset were modulated by texture. For some cells, surface texture had a significant effect on neuronal discharge that was independent of the object weight. In contrast, weight-related responses were never simple main effects of the weight alone and appeared instead as significant interactions between texture and weight. Four neurons either increased or decreased activity in a graded fashion with surface structure (roughness) regardless of the object weight (P < 0.05). Ten other neurons showed increases or decreases in response to one or two textures, which might represent either a graded response or a tuning preference for a specific texture. The firing frequency of the majority (31/45) of neurons reflected an interaction of both texture and weight. The cells with texture-related but weight-independent activities were thought to encode surface characteristics that are largely independent of the grip and lifting forces used to manipulate the object. Such constancies could be used to construct internal representations or mental models for planning and controlling object manipulation.  (+info)

(7/2523) Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala.

Fear conditioning involves the transmission of sensory stimuli to the amygdala from the thalamus and cortex. These input synapses are prime candidates for sites of plasticity critical to the learning in fear conditioning. Because N-methyl-D-aspartate (NMDA)-dependent mechanisms have been implicated in fear learning, we investigated the contribution of NMDA receptors to synaptic transmission at putative cortical and thalamic inputs using visualized whole cell recording in amygdala brain slices. Whereas NMDA receptors are present at both of these pathways, differences were observed. First, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-mediated component of the synaptic response, relative to the NMDA component, is smaller at thalamic than cortical input synapses. Second, thalamic NMDA responses are more sensitive to Mg2+. These findings suggest that there are distinct populations of NMDA receptors at cortical and thalamic inputs to the lateral amygdala. Differences such as these might underlie unique contributions of the two pathways to fear conditioning.  (+info)

(8/2523) Gating of afferent input by a central pattern generator.

Intracellular recordings from the sole proprioceptor (the oval organ) in the crab ventilatory system show that the nonspiking afferent fibers from this organ receive a cyclic hyperpolarizing inhibition in phase with the ventilatory motor pattern. Although depolarizing and hyperpolarizing current pulses injected into a single afferent will reset the ventilatory motor pattern, the inhibitory input is of sufficient magnitude to block afferent input to the ventilatory central pattern generator (CPG) for approximately 50% of the cycle period. It is proposed that this inhibitory input serves to gate sensory input to the ventilatory CPG to provide an unambiguous input to the ventilatory CPG.  (+info)