Inhalation exposure of animals. (9/2617)

Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed.  (+info)

An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. (10/2617)

BACKGROUND: Existing murine models of asthma lack many of the inflammatory and epithelial changes that are typical of the human disease. Moreover, these models are frequently complicated by allergic alveolitis. METHODS: High IgE responder BALB/c mice were systemically sensitised to ovalbumin and chronically challenged with low particle mass concentrations of aerosolised ovalbumin. Titres of antiovalbumin IgE in serum were measured at two weekly intervals by enzyme immunoassay, accumulation of inflammatory cells and histopathological abnormalities of the epithelium were quantified morphometrically in the trachea and the lungs, and airway reactivity was assessed by measuring bronchoconstriction following intravenous administration of methacholine. RESULTS: Mice sensitised by two intraperitoneal injections of ovalbumin developed high titres of IgE antibodies to ovalbumin. Following exposure to low concentrations of aerosolised antigen for up to eight weeks these animals developed a progressive inflammatory response in the airways, characterised by the presence of intraepithelial eosinophils and by infiltration of the lamina propria with lymphoid/mononuclear cells, without associated alveolitis. Goblet cell hyperplasia/metaplasia was induced in the intrapulmonary airways, while epithelial thickening and subepithelial fibrosis were evident following chronic exposure. In parallel, the mice developed increased sensitivity to induction of bronchospasm, as well as increased maximal reactivity. Non-immunised mice exposed to aerosolised ovalbumin had low or absent antiovalbumin IgE and did not exhibit inflammatory or epithelial changes, but developed airway hyperreactivity. CONCLUSIONS: This experimental model replicates many of the features of human asthma and should facilitate studies of pathogenetic mechanisms and of potential therapeutic agents.  (+info)

Airway hyperresponsiveness to ultrasonically nebulized distilled water in subjects with tetraplegia. (11/2617)

The majority of otherwise healthy subjects with chronic cervical spinal cord injury (SCI) demonstrate airway hyperresponsiveness to aerosolized methacholine or histamine. The present study was performed to determine whether ultrasonically nebulized distilled water (UNDW) induces airway hyperresponsiveness and to further elucidate potential mechanisms in this population. Fifteen subjects with SCI, nine with tetraplegia (C4-7) and six with paraplegia (T9-L1), were initially exposed to UNDW for 30 s; spirometry was performed immediately and again 2 min after exposure. The challenge continued by progressively increasing exposure time until the forced expiratory volume in 1 s decreased 20% or more from baseline (PD20) or the maximal exposure time was reached. Five subjects responding to UNDW returned for a second challenge 30 min after inhalation of aerosolized ipratropium bromide (2.5 ml of a 0.6% solution). Eight of nine subjects with tetraplegia had significant bronchoconstrictor responses to UNDW (geometric mean PD20 = 7.76 +/- 7.67 ml), whereas none with paraplegia demonstrated a response (geometric mean PD20 = 24 ml). Five of the subjects with tetraplegia who initially responded to distilled water (geometric mean PD20 = 5.99 +/- 4.47 ml) were not responsive after pretreatment with ipratropium bromide (geometric mean PD20 = 24 ml). Findings that subjects with tetraplegia are hyperreactive to UNDW, a physicochemical agent, combined with previous observations of hyperreactivity to methacholine and histamine, suggest that overall airway hyperresponsiveness in these individuals is a nonspecific phenomenon similar to that observed in patients with asthma. The ability of ipratropium bromide to completely block UNDW-induced bronchoconstriction suggests that, in part, airway hyperresponsiveness in subjects with tetraplegia represents unopposed parasympathetic activity.  (+info)

Dispersion of 0.5- to 2-micron aerosol in microG and hypergravity as a probe of convective inhomogeneity in the lung. (12/2617)

We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp >500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.  (+info)

Long-term effects of aerosolised rhDNase on pulmonary disease progression in patients with cystic fibrosis. (13/2617)

BACKGROUND: After multiple studies, including clinical trials, suggested some mild clinical benefits from the use of rhDNase by patients with cystic fibrosis, a widespread acceptance of the drug has followed. However, long-term effects, specifically on lung disease progression, have not been demonstrated. Experience with the use of this drug in a single cystic fibrosis centre is presented and compared with the trends seen in the patient population of the centre before the introduction of the drug. METHODS: Patients with cystic fibrosis routinely followed at the University of Minnesota Cystic Fibrosis Center and prescribed rhDNase for at least two years were included in this retrospective study. Data on spirometric parameters (FEV1 and FEV1/FVC), allometric index, and admissions to hospital were retrieved from the centre's database for the two years preceding the prescription of rhDNase and the two years that followed. Trends in pulmonary function and allometric index were analysed by mixed linear modelling, and hospital admission rates for both periods were calculated and compared. RESULTS: One hundred and ninety patients met the inclusion criteria for the study. In the two years preceding the prescription of rhDNase the trends noted were those of a mild decline in FEV1, a stable FEV1/FVC, and a mild improvement in allometric index. In the two years that followed the prescription of rhDNase a mild decline in all these parameters occurred which was a significant change from the previous period (all p < 0.009). There was no difference between females and males in the trends experienced after the start of rhDNase. By logistic regression analysis only the presence of malnutrition at the time of prescription was associated with a positive trend after the introduction of rhDNase. No significant change in the hospital admission rates occurred, with rates of 0.52 (0.16) and 0.56 (0.21) admissions/patient/year for the periods before and after the prescription of rhDNase, respectively. CONCLUSIONS: The introduction of rhDNase to the regimen of patients with cystic fibrosis cared for at this centre has not been followed by a positive trend in lung function and nutritional parameters. There are some differences between this patient population and those who participated in previous studies which may help to explain the contrasting findings of this study. However, it is also possible that factors other than mucus clearance need to be improved to achieve a favourable response in disease progression. Patients on this treatment should be followed closely and the benefit judged on an individual basis. More studies are needed to define better the specific indications and use of this form of treatment.  (+info)

Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF-deficient mice. (14/2617)

Surfactant proteins and phospholipids accumulate in the alveolar spaces and lung tissues of mice deficient in granulocyte-macrophage colony-stimulating factor (GM-CSF), with pathological findings resembling the histology seen in the human disease pulmonary alveolar proteinosis (PAP). Previous metabolic studies in GM-CSF-deficient [GM(-/-)] mice indicated that defects in surfactant clearance cause the surfactant accumulation in PAP. In the present study, GM(-/-) mice were treated daily or weekly with recombinant mouse GM-CSF by aerosol inhalation or intraperitoneal injection for 4-5 wk. Lung histology, alveolar macrophage differentiation, and surfactant protein B immunostaining returned toward normal levels in the GM-CSF aerosol-treated mice. Alveolar and lung tissue saturated phosphatidylcholine and surfactant protein B concentrations were significantly decreased after treatment with aerosolized GM-CSF. Cessation of aerosolized GM-CSF for 5 wk resulted in increased saturated phosphatidylcholine pool sizes that returned to pretreatment levels. In contrast, PAP did not improve in GM(-/-) mice treated daily for 5 wk with larger doses of systemic GM-CSF. Aerosolized GM-CSF improved PAP in the GM(-/-) mice, demonstrating that surfactant homeostasis can be influenced by local administration of GM-CSF to the respiratory tract.  (+info)

Mineral fibre sampling and size selection. (15/2617)

Potential health hazards due to fibre inhalation are only evaluated in a limited way by simple optical microscopy examination of the membrane filters on which the fibres have been collected. One must consider the amount of fibres deposited and persisting in the most vulnerable organ compartments. Exposure evaluated in this way must take account of the deposition efficiency and relative clearance efficiency of different regions of the respiratory tract, which depends mainly on the diameter and length distribution of the fibres. The fibre diameter roughly indicates the deposition site in the respiratory tract, while the length is mainly connected with toxicity. For these reasons, at international level, special samplers have been recently proposed, capable of distinguishing the fibre sizes, in order to separate the so-called 'thoracic fraction' (the total fibres which penetrate beyond the larynx) and the 'respirable fraction' (only the fibres reaching the non ciliated respiratory area), which represent the most interesting sizes as far as health effects are concerned. Our purpose in this context is to explore the feasibility of using the Inertial Spectrometer (INSPEC) as a sampler that separates the fibres according to their aerodynamic diameter. The optical and electron microscope observations of the samples demonstrate a satisfactory size separation of the fibres and alignment along the flow lines. Therefore, INSPEC is successful in restricting the microscopic analyses to the potentially noxious fibres and in assessing specific concentrations for each diameter interval.  (+info)

In situ microscopic analysis of asbestos and synthetic vitreous fibers retained in hamster lungs following inhalation. (16/2617)

Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber retention and also fiber lengths and burdens in good agreement with ashing/SEM results.  (+info)