A randomized, blinded, controlled trial investigating the gastrointestinal health effects of drinking water quality. (57/769)

A double-blinded, randomized, controlled trial was carried out in in Melbourne, Australia, to determine the contribution of drinking water to gastroenteritis. Melbourne is one of the few major cities in the world that draws drinking water from a protected forest catchment with minimal water treatment (chlorination only). Six hundred families were randomly allocated to receive either real or sham water treatment units (WTUs) installed in their kitchen. Real units were designed to remove viruses, bacteria, and protozoa. Study participants completed a weekly health diary reporting gastrointestinal symptoms during the 68-week observation period. There were 2,669 cases of highly credible gastroenteritis (HCG) during the study (0.80 cases/person/year). The ratio of HCG episode rates for the real WTU group compared to the sham WTU group was 0.99 (95% confidence interval, 0.85-1.15, p = 0.85). We collected 795 fecal specimens from participants with gastroenteritis, and pathogens were not more significantly common in the sham WTU group. We found no evidence of waterborne disease in Melbourne. The application of this methodology to other water supplies will provide a better understanding of the relationship between human health and water quality.  (+info)

Type II secretion by Aeromonas salmonicida: evidence for two periplasmic pools of proaerolysin. (58/769)

Aeromonas salmonicida containing the cloned gene for proaerolysin secretes the protein via the type II secretory pathway. Here we show that altering a region near the beginning of aerA led to a dramatic increase in the amount of proaerolysin that was produced and that a large amount of the protein was cell associated. All of the cell-associated protein had crossed the cytoplasmic membrane, because the signal sequence had been removed, and all of it was accessible to processing by trypsin during osmotic shock. Enlargement of the periplasm was observed by electron microscopy in overproducing cells, likely caused by the osmotic effect of the very large concentrations of accumulated proaerolysin. Immunogold electron microscopy localized nearly all of the proaerolysin in the enlarged periplasm; however, only half of the protoxin was released from the cells by osmotic shocking. Cross-linking studies showed that this fraction contained normal dimeric proaerolysin but that proaerolysin in the fraction that was not shockable had not dimerized, although it appeared to be correctly folded. Both periplasmic fractions were secreted by the cells; however, the nonshockable fraction was secreted much more slowly than the shockable fraction. We estimated a rate for maximal secretion of proaerolysin from the bacteria that was much lower than the rates that have been estimated for inner membrane transit, which suggests that transit across the outer membrane is rate limiting and may account for the periplasmic accumulation of the protein. Finally, we show that overproduction of proaerolysin inhibited the release of the protease that is secreted by A. salmonicida.  (+info)

Occurrence of two superoxide dismutases in Aeromonas hydrophila: molecular cloning and differential expression of the sodA and sodB genes. (59/769)

Aeromonas spp., considered as emerging opportunistic pathogens, belong to the family Vibrionaceae. Among the criteria currently used for their classification is the presence of a single FeSOD (iron-containing superoxide dismutase), which distinguishes them from Enterobacteriacea. In this paper the cloning of the sodA and sodB genes encoding two different SODs in Aeromonas hydrophila ATCC 7966 is reported. The sodB gene encoded an FeSOD (196 amino acids, 21.5 kDa), was constitutively expressed and showed 75% homology with the E. coli FeSOD. The sodA gene encoded a protein of 206 amino acids (22.5 kDa) with MnSOD (manganese-containing SOD) activity and showed 55% homology with the Escherichia coli MnSOD. The MnSOD of A. hydrophila was detected only during the stationary phase of growth under high aeration or when induced by lack of iron. Nevertheless, paraquat had no detectable effect on its production. The amino-terminal part of the Mn-containing protein contained a putative signal sequence which could permit a periplasmic localization.  (+info)

Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. (60/769)

A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908-4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had "empty" integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetA positive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids and tetA among the OTC-resistant aeromonads, tetE and the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.  (+info)

Lateral flagella and swarming motility in Aeromonas species. (61/769)

Swarming motility, a flagellum-dependent behavior that allows bacteria to move over solid surfaces, has been implicated in biofilm formation and bacterial virulence. In this study, light and electron microscopic analyses and genetic and functional investigations have shown that at least 50% of Aeromonas isolates from the species most commonly associated with diarrheal illness produce lateral flagella which mediate swarming motility. Aeromonas lateral flagella were optimally produced when bacteria were grown on solid medium for approximately 8 h. Transmission and thin-section electron microscopy confirmed that these flagella do not possess a sheath structure. Southern analysis of Aeromonas reference strains and strains of mesophilic species (n = 84, varied sources and geographic regions) with a probe designed to detect lateral flagellin genes (lafA1 and lafA2) showed there was no marked species association of laf distribution. Approximately 50% of these strains hybridized strongly with the probe, in good agreement with the expression studies. We established a reproducible swarming assay (0.5% Eiken agar in Difco broth, 30 degrees C) for Aeromonas spp. The laf-positive strains exhibited vigorous swarming motility, whereas laf-negative strains grew but showed no movement from the inoculation site. Light and scanning electron microscopic investigations revealed that lateral flagella formed bacterium-bacterium linkages on the agar surface. Strains of an Aeromonas caviae isolate in which lateral flagellum expression was abrogated by specific mutations in flagellar genes did not swarm, proving conclusively that lateral flagella are required for the surface movement. Whether lateral flagella and swarming motility contribute to Aeromonas intestinal colonization and virulence remains to be determined.  (+info)

Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. (62/769)

Most Aeromonas strains isolated from two European rivers were previously found to be resistant to nalidixic acid. In order to elucidate the mechanism of this resistance, 20 strains of Aeromonas caviae (n = 10), A. hydrophila (n = 5), and A. sobria (n = 5) complexes, including 3 reference strains and 17 environmental isolates, were investigated. Fragments of the gyrA, gyrB, parC, and parE genes encompassing the quinolone resistance-determining regions (QRDRs) were amplified by PCR and sequenced. Results obtained for the six sensitive strains showed that the GyrA, GyrB, ParC, and ParE QRDR fragments of Aeromonas spp. were highly conserved (> or =96.1% identity), despite some genetic polymorphism; they were most closely related to those of Vibrio spp., Pseudomonas spp., and members of the family Enterobacteriaceae (72.4 to 97.1% homology). All 14 environmental resistant strains carried a point mutation in the GyrA QRDR at codon 83, leading to the substitution Ser-83-->Ile (10 strains) or Ser-83-->Arg. In addition, seven strains harbored a mutation in the ParC QRDR either at position 80 (five strains), generating a Ser-80-->Ile (three strains) or Ser-80-->Arg change, or at position 84, yielding a Glu-84-->Lys modification. No amino acid alterations were discovered in the GyrB and ParE QRDRs. Double gyrA-parC missense mutations were associated with higher levels of quinolone resistance compared with the levels associated with single gyrA mutations. The most resistant strains probably had an additional mechanism(s) of resistance, such as decreased accumulation of the drugs. Our data suggest that, in mesophilic Aeromonas spp., as in other gram-negative bacteria, gyrase and topoisomerase IV are the primary and secondary targets for quinolones, respectively.  (+info)

Diversity, persistence, and virulence of Aeromonas strains isolated from drinking water distribution systems in Sweden. (63/769)

The Aeromonas populations in 13 Swedish drinking water distribution systems, representing different treatments, were investigated. From each system, water samples were collected four times during the period from May to September 1994 from raw water and water after treatment and at two to five sites within the distribution system. In total, 220 water samples were collected. From samples containing presumptive Aeromonas, up to 32 colonies were analyzed by the PhenePlate Aeromonas (PhP-AE) system, which is a highly discriminating biochemical fingerprinting method. Selected isolates from different phenotypes (PhP types) were further identified by the API 20 NE system and by gas-liquid chromatography analysis of fatty acid methyl esters (FAMEs). Selected isolates were also assayed for their potential to produce hemolysin and cytotoxin and for their ability to adhere to human intestinal cells. In total, 117 water samples (53%) contained presumptive Aeromonas which numbered up to 10(6) CFU/100 ml in raw water and up to 750 CFU/100 ml in tap water. Among the 2,117 isolates that were subjected to typing by the PhP-AE system, more than 300 distinct PhP types were found, of which the majority occurred only sporadically. Raw (surface) water samples usually contained many different PhP types, showing high diversity indices (Di) (median Di = 0.95). The Aeromonas populations in samples collected from within the distribution systems were less diverse (median Di = 0.58) and were often dominated by one major PhP type that was found on several sampling occasions. Seventeen such major PhP types could be found and were represented in 1,037 isolates (49%). Identification by API 20 NE and FAME analysis revealed that most of the major PhP types were Aeromonas hydrophila or belonged to unidentified Aeromonas species. Hemolysin and cytotoxin production was observed in most major PhP types (representing 87 and 54% of the assayed isolates, respectively), and adherence was found in 89% of the isolates that produced cytotoxin. Thus, the data presented here show that although raw water may contain very diverse Aeromonas populations, the populations seemed to be remarkably stable within the studied water distribution systems, and that some potentially pathogenic Aeromonas strains could persist for several months in drinking water.  (+info)

Detection of Aeromonas caviae in the common housefly Musca domestica by culture and polymerase chain reaction. (64/769)

Aeromonas caviae has been implicated in diarrhoeal disease of livestock and humans. The potential role of houseflies in the epidemiology of this pathogen was investigated by examining the prevalence of A. caviae in houseflies collected from two South Carolina farms and one restaurant. Isolation was accomplished by culture of flies in alkaline peptone water followed by identification with Aeromonas-specific PCR using novel primers (APW-PCR). All isolates cultured from houseflies were identified as A. caviae by biochemical characteristics and direct sequencing approximately 800 bp of the 16S rRNA gene. Aeromonas caviae was detected in 78% (272/349) dairy farm flies, 55% (54/99) pig farm flies and 39% (77/200) restaurant flies. Faeces from cows and pigs at the farms also were positive for A. caviae (58% and 100%, respectively). The APW PCR method provided a rapid, convenient way to identify A. caviae from faeces and houseflies that contained hundreds of bacterial species.  (+info)