Characterization of the pro-aminopeptidase from Aeromonas caviae T-64. (49/769)

The pro-aminopeptidase from Aeromonas caviae T-64 (pro-apAC) had maximal activity at 60 degrees C and was more stable than mature apAC at temperature up to 65 degrees C for 1 hour. The pH stability of pro-apAC ranged from 4.0 to 8.0, which is broader than the range for the mature apAC. The kcat/Km of pro-apAC was 1.4% to 24% of that of mature apAC.  (+info)

Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. (50/769)

Recent research has identified endogenous cationic antimicrobial peptides as important factors in the innate immunity of many organisms, including fish. It is known that antimicrobial activity, as well as lysozyme activity, can be induced in coho salmon (Oncorhynchus kisutch) mucus after exposure of the fish to infectious agents. Since lysozyme alone does not have antimicrobial activity against Vibrio anguillarum and Aeromonas salmonicida, a four-step protein purification protocol was used to isolate and identify antibacterial fractions from bacterially challenged coho salmon mucus and blood. The purification consisted of extraction with hot acetic acid, extraction and concentration on a C(18) cartridge, gel filtration, and reverse-phase chromatography on a C(18) column. N-terminal amino acid sequence analyses revealed that both the blood and the mucus antimicrobial fractions demonstrated identity with the N terminus of trout H1 histone. Mass spectroscopic analysis indicated the presence of the entire histone, as well as fragments thereof, including a 26-amino-acid N-terminal segment. These fractions inhibited the growth of antibiotic-supersuscptible Salmonella enterica serovar Typhimurium, as well as A. salmonicida and V. anguillarum. Synthetic peptides identical to the N-terminally acetylated or C-terminally amidated 26-amino-acid fragment were inactive in antimicrobial assays, but they potentiated the antimicrobial activities of the flounder peptide pleurocidin, lysozyme, and crude lysozyme-containing extracts from coho salmon. The peptides bound specifically to anionic lipid monolayers. However, synergy with pleurocidin did not appear to occur at the cell membrane level. The synergistic activities of inducible histone peptides indicate that they play an important role in the first line of salmon defenses against infectious pathogens and that while some histone fragments may have direct antimicrobial effects, others improve existing defenses.  (+info)

Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. (51/769)

A lambda phage genomic library of Aeromonas caviae ME-1, a multiple-xylanase-producing bacterium, was screened for xylan degradation activities. We isolated one clone, B65, which had weak xylanase activity, by the DNS method, but gave no visible bands on zymogram assay using SDS-xylan-PAGE. Based on TLC analyses of enzymatic products and some glycosidase assays using p-nitrophenyl substrates, we established that pB65 encodes a beta-xylosidase gene. In the nucleotide sequence analysis, we found a 2190-bp open reading frame (ORF) named xysB. XysB protein is similar to some beta-xylosidases, which are categorized in the glycosyl hydrolase family 52. Another ORF (xyg), that showed similarity to the family 67 alpha-glucuronidase, was also found downstream of the xysB gene. The xysB ORF and its promoter region were cloned into the pT7-Blue vector and the transformant cells had beta-xylosidase activity. The relative molecular mass were estimated to be 75 kDa by SDS-PAGE and 159 kDa by gel filtration. These data showed that XysB has a dimeric structure of 80,697 Da subunits. This enzyme showed optimal activity at 50 degrees C and pH 6.0. It was stable below 40 degrees C and pH 5-8. The Km and Vmax were calculated to be 0.34 mM and 33 nmol x min(-1) x microg(-1), respectively. This enzyme also showed transglycosylation activity against X3 and produced X4 and X5.  (+info)

Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. (52/769)

We have identified nine genes, the expression of which are regulated by the CreBC two-component system: the first members of the cre regulon. They are divided into eight transcriptional units, each having a promoter-proximal TTCACnnnnnnTTCAC "cre-tag" motif. The cre regulon genes are: the ackA/pta operon, the products of which collectively catalyze the conversion of acetyl-CoA into acetate and ATP; talA, which encodes an enzyme involved in the mobilization of glyceraldehyde-3-phosphate into the pentose phosphate pathway; radC, which encodes a RecG-like DNA recombination/repair function; malE, which is the first gene in the malEFG maltose transporter operon; trgB, which encodes an ADP-ribose pyrophosphorylase; and three other genes, creD, yidS and yieI, the products of which have not been assigned a function. Expression of each of these cre regulon genes is induced via CreBC during growth in minimal media, with the exception of malE, which is more tightly repressed. The diverse functions encoded by the cre regulon suggest that CreBC is a global regulator that sits right at the heart of metabolic control in Escherichia coli.  (+info)

Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. (53/769)

The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  (+info)

Characterization of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas. (54/769)

Class 1 integrons were found in 26 of 40 antibiotic-resistant isolates of the fish pathogen Aeromonas salmonicida from Northern Europe and North America. Three different dhfr genes, conferring trimethoprim resistance, and one ant(3")1a aminoglycoside resistance gene were identified as gene inserts. The gene cassettes tended to be conserved among isolates from a particular geographical area. Nineteen isolates transferred R-plasmids carrying different tet determinants to Escherichia coli in filter mating assays, and in 15 cases, the class 1 integrons were co-transferred. Transferable sulphadiazine, trimethoprim and streptomycin resistances were invariably encoded by integrons. It thus appears that integron-encoded antibiotic resistance genes contribute substantially to the horizontal spread of antimicrobial resistance within this species, being associated with conjugative plasmids.  (+info)

Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. (55/769)

Aeromonas caviae is increasingly being recognized as a cause of gastroenteritis, especially among the young. The adherence of aeromonads to human epithelial cells in vitro has been correlated with enteropathogenicity, but the mechanism is far from well understood. Initial investigations demonstrated that adherence of A. caviae to HEp-2 cells was significantly reduced by either pretreating bacterial cells with an antipolar flagellin antibody or by pretreating HEp-2 cells with partially purified flagella. To precisely define the role of the polar flagellum in aeromonad adherence, we isolated the A. caviae polar flagellin locus and identified five polar flagellar genes, in the order flaA, flaB, flaG, flaH, and flaJ. Each gene was inactivated using a kanamycin resistance cartridge that ensures the transcription of downstream genes, and the resulting mutants were tested for motility, flagellin expression, and adherence to HEp-2 cells. N-terminal amino acid sequencing, mutant analysis, and Western blotting demonstrated that A. caviae has a complex flagellum filament composed of two flagellin subunits encoded by flaA and flaB. The predicted molecular mass of both flagellins was approximately 31,700 Da; however, their molecular mass estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 35,500 Da. This aberrant migration was thought to be due to their glycosylation, since the proteins were reactive in glycosyl group detection assays. Single mutations in either flaA or flaB did not result in loss of flagella but did result in decreased motility and adherence by approximately 50%. Mutation of flaH, flaJ, or both flagellin genes resulted in the complete loss of motility, flagellin expression, and adherence. However, mutation of flaG did not affect motility but did significantly reduce the level of adherence. Centrifugation of the flagellate mutants (flaA, flaB, and flaG) onto the cell monolayers did not increase adherence, whereas centrifugation of the aflagellate mutants (flaH, flaJ, and flaA flaB) increased adherence slightly. We conclude that maximum adherence of A. caviae to human epithelial cells in vitro requires motility and optimal flagellar function.  (+info)

Isolation of Aeromonas sp. ATCC 29063, a phenol-producing organism, from fresh haddock. (56/769)

Attempts to isolate phenol-producing organisms from stale haddock fillets failed. Several such isolates, however, were readily obtained from fresh haddock and were designated Aeromonas sp. Phenol was produced from L-tyrosine by these isolates.  (+info)