Concepts of myelin and myelination in neuroradiology. (9/213)

Until the advent of MR imaging, knowledge of the structure of myelin and the process of myelination were of little importance to the neuroradiologist. Other than some mild changes in the attenuation of white matter, myelination resulted in no significant alterations of CT (1) or sonographic studies. MR studies, on the other hand, have been increasingly used for pediatric brain imaging. MR imaging's greater sensitivity to small changes in the water content of brain tissue, to changes in the binding of free water (revealed by magnetization transfer), and to the extent and anisotropy of water diffusion (revealed by diffusion imaging) has cast new light on this very complex and important molecule. Assessing myelination has become a key component of evaluating the child with delayed development. Moreover, better understanding of the nature of myelin and the effect of its different components on MR imaging parameters may help us to understand and diagnose inborn errors of metabolism better. In this review, I discuss what is known regarding the function and structure of CNS myelin and the effects of the various components of myelin on the signal imparted to the MR image. Summary Abnormalities of myelin can cause a wide variety of disorders of the nervous system. MR imaging is a powerful tool for the study of myelin and its disorders. However, only by understanding the physiologic properties and structure of myelin can we use MR imaging to its fullest capacity for studying patients with myelin disorders. In this review, I have discussed the structure of myelin as it relates to MR imaging of normal myelination and to neurologic disorders resulting from abnormalities of myelin. Thinking of myelin and its disorders in this manner will be critical to using MR imaging techniques optimally to diagnose and study these disorders further.  (+info)

Simvastatin does not normalize very long chain fatty acids in adrenoleukodystrophy mice. (10/213)

X-linked adrenoleukodystrophy (ALD) is a genetic demyelinating disorder characterized by accumulation of very long chain fatty acid (VLCFA) in tissues. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, normalizes VLCFA in fibroblasts and plasma from ALD patients. We dietary treated ALD mice with simvastatin, an analog of lovastatin with similar pharmacokinetics and effects on plasma VLCFA in ALD patients at 20 or 60 mg/kg/day for 6-12 weeks. No decrease of VLCFA content was observed in mouse tissues, including the brain. A significant increase of VLCFA was rather observed in the brain of ALD mice at 60 mg/kg/day.  (+info)

Co-expression of mutated and normal adrenoleukodystrophy protein reduces protein function: implications for gene therapy of X-linked adrenoleukodystrophy. (11/213)

Inherited defects in the X-chromosomal adrenoleukodystrophy (ALD; ABCD1) gene are the genetic cause of the severe neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD). Biochemically the accumulation of very long-chain fatty acids, caused by impaired peroxisomal beta-oxidation, is the pathognomonic characteristic of the disease. Due to the X-chromosomal inheritance of X-ALD no data are available to clarify the question whether mutated adrenoleukodystrophy proteins (ALDPs) can negatively influence normal ALDP function. Here we show that restoration of beta-oxidation in X-ALD fibroblasts following transient transfection with normal ALD cDNA is more effective in ALDP-deficient fibroblasts compared with fibroblasts expressing normal amounts of mutated ALDP. Furthermore, we utilized the HeLa Tet-on system to construct a stable HeLa cell line expressing a constant level of endogenous ALDP and doxycycline-inducible levels of mutated ALDP. The induction was doxycycline dosage-dependent and the ALDP correctly localized. Interestingly, although mutated ALDP increased >6-fold in a dosage-dependent manner the total amount of ALDP (mutated and normal) remained approximately even as demonstrated by western blot and flow cytometric analyses. Thus, apparently mutated and normal ALDP compete for integration into a limited number of sites in the peroxisomal membrane. Consequently, increased amounts of mutated ALDP resulted in decreased peroxisomal beta-oxidation and accumulation of very long-chain fatty acids. These findings have direct implications on future gene therapy approaches for treatment of X-ALD, since in some patients a non-functional endogenous protein could act in a dominant negative way or displace the introduced, normal protein.  (+info)

T2 relaxation measurements in X-linked adrenoleukodystrophy performed using dual-echo fast fluid-attenuated inversion recovery MR imaging. (12/213)

SUMMARY: The purpose of this study was to determine whether dual-echo fast fluid-attenuated inversion recovery MR imaging and corresponding T2 brain maps can show different zones in the affected white matter of patients with cerebral X-linked adrenoleukodystrophy. Ten male patients with cerebral X-linked adrenoleukodystrophy underwent imaging performed using dual-echo fast fluid-attenuated inversion recovery and dual-echo conventional spin-echo MR sequences. Corresponding T2 relaxation maps of the brain were generated. On the basis of dual-echo fast fluid-attenuated inversion recovery images and T2 maps, the affected white matter could be divided into two distinct zones in four patients with cerebral X-linked adrenoleukodystrophy.  (+info)

Rat adrenoleukodystrophy-related (ALDR) gene: full-length cDNA sequence and new insight in expression. (13/213)

X-linked adrenoleukodystrophy (X-ALD) is an inherited demyelinating disorder due to mutations in the ALD gene, which encodes a peroxisomal ABC half-transporter (ALDP). It has been suggested that ALDP assembles with ALDRP (adrenoleukodystrophy-related protein), a close homologous half-transporter, to form a functional heterodimer. For the first time full-length ALDRP cDNA (5.5 kb) was cloned, and 5' and 3' RACE analysis revealed that alternative usage of polyadenylation sites generates the two transcripts of 3.0 and 5.5 kb observed in the rat in Northern blot analysis. Southern blotting and chromosomal mapping demonstrated one ALDR locus in the rat genome. Characterisation of the 3' flanking region suggested that an ID sequence might be responsible for high expression of the 5.5 kb ALDRP transcript in rat brain. ALDR gene expression was found to be high in the liver of rats before weaning and very low in adult rats; the reverse developmental regulation was observed in the brain. Fenofibrate, which is a potent inducer of the ALDR gene in the liver of adult rats, could not induce the ALDR gene in suckling rats. The exact significance of this result with regard to development of an efficient pharmacological gene therapy for X-ALD is discussed.  (+info)

Disorders of peroxisome biogenesis due to mutations in PEX1: phenotypes and PEX1 protein levels. (14/213)

Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called "peroxisome biogenesis disorders" (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1. In the present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele. When patient fibroblasts harboring this allele were grown at 30 degrees C, a two- to threefold increase in PEX1 protein levels was observed, associated with a recovery of peroxisomal function. This suggests that the G843D missense mutation results in a misfolded protein, which is more stable at lower temperatures. We conclude that the search for the factors and/or mechanisms that determine the stability of mutant PEX1 protein by high-throughput procedures will be a first step in the development of therapeutic strategies for patients with mild PBDs.  (+info)

Fibrate induction of the adrenoleukodystrophy-related gene (ABCD2): promoter analysis and role of the peroxisome proliferator-activated receptor PPARalpha. (15/213)

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease due to a defect in the ABCD1 (ALD) gene. ABCD1, and the two close homologues ABCD2 (ALDR) and ABCD3 (PMP70), are genes encoding ATP-binding cassette half-transporters of the peroxisomal membrane. As overexpression of the ABCD2 or ABCD3 gene can reverse the biochemical phenotype of X-ALD (reduced beta-oxidation of very-long-chain fatty acids), pharmacological induction of these partially redundant genes may represent a therapeutic approach to X-ALD. We previously reported that the ABCD2 and ABCD3 genes could be strongly induced by fibrates, which are hypolipidaemic drugs and peroxisome-proliferators in rodents. We provide evidence that the induction is dependent on peroxisome proliferator-activated receptor (PPARalpha) as both genes were not induced in fenofibrate-treated PPARalpha -/- knock-out mice. To further characterize the PPARalpha pathway, we cloned and analysed the promoter of the ABCD2 gene, the closest homologue of the ABCD1 gene. The proximal region (2 kb) of the rat promoter displayed a high conservation with the human and mouse cognate sequences suggesting an important role of the region in regulation of the ABCD2 gene. Classically, fibrate-induction involves interaction of PPARalpha with a response element (PPRE) characterized by a direct repeat of the AGGTCA-like motif. Putative PPRE motifs of the rat ABCD2 promoter were studied in the isolated form or in their promoter context by gel-shift assay and transfection of COS-7 cells. We failed to characterize a functional PPRE, suggesting a different mechanism for the PPARalpha-dependent regulation of the ABCD2 gene.  (+info)

Peroxisomal straight-chain Acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. (16/213)

Docosahexaenoic acid (DHA, C22:6n-3) is essential for normal brain and retinal development. The nature and subcellular location of the terminal steps in DHA biosynthesis have been controversial. Rather than direct Delta4-desaturation of C22:5n-3, it has been proposed that this intermediate is elongated to C24:5n-3, desaturated to C24:6n-3, and "retroconverted" to DHA via peroxisomal beta-oxidation. However, this hypothesis has recently been challenged. The goal of this study was to determine the mechanism and specific enzymes required for the retroconversion step in human skin fibroblasts. Cells from patients with deficiencies of either acyl-CoA oxidase or D-bifunctional protein, the first two enzymes of the peroxisomal straight-chain fatty acid beta-oxidation pathway, exhibited impaired (5-20% of control) conversion of either [1-14C]18:3n-3 or [1-14C]22:5n-3 to DHA as did cells from peroxisome biogenesis disorder patients comprising eight distinct genotypes. In contrast, normal DHA synthesis was observed in cells from patients with rhizomelic chondrodysplasia punctata, Refsum disease, X-linked adrenoleukodystrophy, and deficiency of mitochondrial medium- or very long-chain acyl-CoA dehydrogenase. Acyl-CoA oxidase-deficient cells accumulated 2-5 times more radiolabeled C24:6n-3 than did controls. Our data are consistent with the retroconversion hypothesis and demonstrate that peroxisomal beta-oxidation enzymes acyl-CoA oxidase and D-bifunctional protein are essential for this process in human skin fibroblasts.  (+info)