Functional domains of the mouse beta3-adrenoceptor associated with differential G protein coupling. (33/90)

Alternative splicing of mouse beta3-adrenoceptor transcripts produces an additional receptor isoform (beta3b-adrenoceptor) with a C terminus comprising 17 amino acids distinct from the 13 in the known receptor (beta3a-adrenoceptor). We have shown that the beta3b-adrenoceptor couples to both Gs and Gi, whereas the beta3a-adrenoceptor couples only to Gs. To define the regions involved in this differential G protein coupling, we have compared wild-type, truncated, and mutant beta3-adrenoceptors. In Chinese hamster ovary cells expressing beta3-adrenoceptors truncated at the splicing point, cAMP accumulation with CL316243 [(R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1,3-benzodioxole-2 ,2-dicarboxylate] increased by 59% following pretreatment with pertussis toxin, suggesting that the C-terminal region of the beta3a-adrenoceptor inhibits coupling to Gi. We next utilized the cell-penetrating peptide Transportan 10 (Tp10) to introduce peptides comprising the different C-terminal tail fragments into cells expressing beta3a-adrenoceptor, beta3b-adrenoceptor, and the truncated beta3-adrenoceptor. Treatment with beta3a-Tp10 (1 microM) caused cAMP responses to CL316243 in the beta3a-adrenoceptor to become pertussis toxin-sensitive and display a 30% increase over control, whereas the other peptides did not affect any receptor. Mutation at a potential tyrosine phosphorylation site (Tyr392Ala beta3a-adrenoceptor) did not alter responses or pertussis toxin sensitivity relative to the parent receptor. Surprisingly, a Ser388Ala/Ser389Ala mutant beta3b-adrenoceptor became unresponsive to CL316243 while retaining an extracellular acidification rate response to SR59230A [3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate]. Our findings suggest that the beta3a-adrenoceptor cannot couple to Gi because of conformational changes induced by a protein(s) that interacts with residues in the C-terminal tail or because this protein(s) affects the intracellular localization of the beta3a-adrenoceptor.  (+info)

Stimulation of the ADRB3 adrenergic receptor induces relaxation of human placental arteries: influence of preeclampsia. (34/90)

Preeclampsia, which complicates 3-8% of pregnancies, is one of the leading causes of neonatal morbidity and mortality. Its pathophysiology remains unclear. The aim of the present study was to investigate the presence and the role of beta2- and beta2-adrenergic receptors (ADRB2 and ADRB3, respectively) in human placental arteries and to assess the influence of preeclampsia on ADRB responsiveness. SR 59119A, salbutamol, and isoproterenol (ADRB3, ADRB2, and nonselective ADRB agonists, respectively) induced a concentration-dependent relaxation of placental artery rings obtained from women with uncomplicated or preeclamptic pregnancies. SR 59119A-induced relaxation was unaffected by the blockade of ADRB1 and ADRB2 by 0.1 microM propranolol but was significantly decreased by the blockade of ADRB1, ADRB2, and ADRB3 by 10 microM propranolol. Both SR 59119A and salbutamol were associated with a significant increase in cAMP production that was significantly inhibited by pretreatment with 0.1 microM propranolol only for salbutamol. SR 59119A-induced relaxation (E(max) = 28% +/- 5% vs. 45% +/- 4%, respectively) and cAMP production (2.7 +/- 0.5 vs. 4.9 +/- 0.4 pmol/mg of protein, respectively; P < 0.01) were decreased in arteries obtained from preeclamptic compared to normotensive women. Both ADRB2 and ADRB3 transcripts were expressed at the same level between arteries from normotensive and preeclamptic women. Western blot analysis, however, revealed a decreased expression of the ADRB3 immunoreactive protein in arteries from preeclamptic compared to normotensive women. We suggest the presence of functional ADRB2 and ADRB3 in human placental arteries. Even if preeclampsia is associated with an impairment of the ADRB3 responsiveness, ADRB3 agonists may have future pharmaceutical implications in the management of pregnancy-related disorders.  (+info)

Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. (35/90)

Mitochondrial uncoupling protein-1 (UCP1) has been thought to be a key molecule for thermogenesis during cold exposure and spontaneous hyperphagia and thereby in the autonomic regulation of energy expenditure and adiposity. However, UCP1 knockout (KO) mice were reported to be cold intolerant but unexpectedly did not get obese even after hyperphagia, implying that UCP1 may not be involved in the regulation of adiposity. Treatment of obese animals with beta3-adrenergic agonists is known to increase lipid mobilization, induce UCP1, and, finally, reduce body fat content. To obtain direct evidence for the role of UCP1 in the anti-obesity effect of beta3-adrenergic stimulation, in the present study, UCP1-KO and wild-type (WT) mice were fed on cafeteria diets for 8 wk and then given a beta3-adrenergic agonist, CL-316,243 (CL), or saline for 2 wk. A single injection of CL increased whole body oxygen consumption and brown fat temperature in WT mice but not in KO mice, and it elicited almost the same plasma free fatty acid response in WT and KO mice. WT and KO mice increased similarly their body and white fat pad weights on cafeteria diets compared with those on laboratory chow. Daily treatment with CL resulted in a marked reduction of white fat pad weight and the size of adipocytes in WT mice, but not in KO mice. Compared with WT mice, KO mice expressed increased levels of UCP2 in brown fat but decreased levels in white fat and comparable levels of UCP3. It was concluded that the anti-obesity effect of beta3-adrenergic stimulation is largely attributable to UCP1, but less to UCP2 and UCP3, and thereby to UCP1-dependent degradation of fatty acids released from white adipose tissue.  (+info)

Mixed beta3-adrenoceptor agonist and alpha1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. (36/90)

Nebivolol, a selective beta-adrenoceptor (beta1-AR) antagonist, induces vasodilatation by an endothelium- and NO-cGMP-dependent pathway. However, the mechanisms involved in the vascular effect of nebivolol have not been established. Thus, we evaluated the role of alpha1 and beta3-ARs in nebivolol-induced vasodilatation. The responses to nebivolol were investigated in vitro in thoracic aortic rings isolated from male Sprague-Dawley rats. Nebivolol (0.1-10 microM) significantly shifted the concentration-response curve to phenylephrine, an alpha1-AR agonist, to the right in a concentration-dependent manner (pA2 = 6.5). Conversely, the concentration-response curve to endothelin 1 (ET1) was unaffected by nebivolol. In ET1-precontracted rings, nebivolol induced a concentration-dependent relaxation, which was unaffected by nadolol (a beta1/beta2-AR antagonist) but was significantly reduced by L-748,337 (a beta3-AR antagonist), endothelium removal or pretreatment with L-NMMA (an NOS inhibitor). Similar results were obtained with a beta3-AR agonist, SR 58611A. It was concluded that, in rat aorta, nebivolol-induced relaxation results from both inhibition of alpha1-ARs and activation of beta3-ARs. In addition, we confirmed that the endothelium and the NO pathway are involved in the vascular effect of nebivolol. The identification of these vascular targets of nebivolol indicate that it has therapeutic potential for the treatment of pathological conditions associated with an elevation of sympathetic tone, such as heart failure and hypertension.  (+info)

Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. (37/90)

OBJECTIVE: We sought to determine if different beta-adrenergic receptor (betaAR) subtypes, and their associated signalling machinery, are functionally localized to nuclear membranes. METHODS: Employing enriched nuclear preparations, we assayed the specific presence of betaAR by measuring 125I-cyanopindolol (CYP) binding, Western blotting, confocal microscopy and functional assays. RESULTS: Western blots of rat heart nuclear fractions and confocal immunofluorescent analysis of adult rat and mouse ventricular cardiomyocytes displayed the presence of beta 1AR and beta 3AR but, surprisingly, not the beta 2AR on nuclear membranes. Nuclear localization of downstream signalling partners Gs, Gi and adenylyl cyclases II and V/VI was also demonstrated. The functional relevance of nuclear betaAR was shown by receptor-mediated stimulation of adenylyl cyclase activity by isoproterenol but not the beta 3AR-selective agonist CL 316243 in enriched nuclear preparations. We also examined the effect of subtype-selective ligands on the initiation of RNA synthesis in isolated nuclei. Both isoproterenol and another beta 3AR-selective agonist, BRL 37344, increased RNA synthesis which was inhibited by pertussis toxin (PTX). Neither a beta 1AR-selective agonist, xamoterol, nor a beta 2AR-selective agonist, procaterol, was able to stimulate transcription. However, both CGP 20712A and ICI 118,551 blocked isoproterenol-mediated effects to varying extents. PTX treatment also revealed that nuclear betaAR may be coupled to other signalling pathways in addition to Gi, as stimulation under these conditions reduced initiation of transcription below basal levels. CONCLUSION: These results highlight differential subcellular localization for betaAR subtypes and indicate that betaAR may have specific roles in regulating nuclear function in cardiomyocytes.  (+info)

Differential coupling of beta3A- and beta3B-adrenergic receptors to endogenous and chimeric Galphas and Galphai. (38/90)

Chimeric G proteins made by replacing the COOH-terminal heptapeptide of G(alpha)q with the COOH-terminal heptapeptide of G(alpha)s or G(alpha)i were used to assess the relative coupling of beta(3)-adrenergic receptor (beta(3)-AR) splice variants (beta(3A) and beta(3B)) to G(alpha)s and G(alpha)i. The G(alpha)q/s and G(alpha)q/i chimeras transformed the response to receptor activation from regulation of adenylyl cyclase to mobilization of intracellular calcium (Ca(2+)(i)). Complementary high-throughput and single-cell approaches were used to evaluate agonist-induced coupling of the receptor to the G protein chimeras. In cells stably transformed with rat beta(3)-AR, transfected with the G protein chimeras, and evaluated using a scanning fluorometer, beta(3)-AR-induced coupling to G(alpha)q/s produced a rapid eightfold increase in Ca(2+)(i) followed by a slow decay to levels 25% above baseline. G(alpha)q/i also linked rat beta(3)-AR to mobilization of Ca(2+)(i) in a similar time- and agonist-dependent manner, but the net 2.5-fold increase in Ca(2+)(i) was only 30% of the response obtained with G(alpha)q/s. Activation of the rat beta(3)-AR also increased GTP binding to endogenous G(alpha)i threefold in membranes from CHO cells stably transformed with the receptor. A complementary single-cell imaging approach was used to assess the relative coupling of mouse beta(3A)- and beta(3B)-AR to G(alpha)i under conditions established to produce equivalent agonist-dependent coupling of the receptor splice variants to G(alpha)q/s and to increases in intracellular cAMP through endogenous G(alpha)s. The beta(3A)- and beta(3B)-AR coupled equivalently to G(alpha)q/i, but the temporal patterns of Ca(2+)(i) mobilization indicated that coupling was significantly less efficient than coupling to G(alpha)q/s. Collectively, these findings indicate less efficient but equivalent coupling of beta(3A)- and beta(3B)-AR to G(alpha)i vs. G(alpha)s and suggest that differential expression of the splice variants would not produce local differences in signaling networks linked to beta(3)-AR activation.  (+info)

Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. (39/90)

Catecholamine-stimulated lipolysis is primarily a beta-adrenergic and cAMP-dependent event. In previous studies we established that the beta(3)-adrenergic receptor (beta(3)AR) in adipocytes utilizes a unique mechanism to stimulate extracellular signal-regulated kinases 1 and 2 (ERK) by direct recruitment and activation of Src kinase. Therefore, we investigated the role of the ERK pathway in adipocyte metabolism and found that the beta(3)AR agonist CL316,243 regulates lipolysis through both cAMP-dependent protein kinase (PKA) and ERK. Inhibition of PKA activity completely eliminated lipolysis at low (subnanomolar) CL316,243 concentrations and by 75-80% at higher nanomolar concentrations. The remaining 20-25% of PKA-independent lipolysis, as well as ERK activation, was abolished by inhibiting the activity of either Src (PP2 or small interfering RNA), epidermal growth factor receptor (EGFR with AG1478 or small interfering RNA), or mitogen-activated protein kinase kinase 1 or 2 (MKK1/2 with PD098059). PD098059 inhibited lipolysis by 53% in mice as well. Finally, the effect of estradiol, a reported acute activator of ERK and lipolysis, was also totally prevented by PP2, AG1478, and PD098059. These results suggest that ERK activation by beta(3)AR depends upon Src and epidermal growth factor receptor kinase activities and is responsible for the PKA-independent portion of the lipolytic response. Together these results illustrate the distinct and complementary roles for PKA and ERK in catecholamine-stimulated lipolysis.  (+info)

Beta3-adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism. (40/90)

Neuroendocrine regulation of cardiac function involves a population of three types of beta-adrenoceptors (ARs). In various mammalian species, beta1- and beta2-AR stimulation produces an increase in contractility; whereas beta3-AR activation mediates negative inotropic effects. At the moment, nothing is known about the physiological role of beta3-AR in fish. Using an isolated working heart preparation, we show that a beta3-AR selective agonist BRL(37344) (0.1-100 nmol l(-1)) elicits a dose-dependent negative inotropism in the freshwater eel Anguilla anguilla. This effect was insensitive to the beta1/beta2-AR inhibitor nadolol (10 mumol l(-1)), but was blocked by the beta3-AR-specific antagonist SR(59230) (10 nmol l(-1)). The analysis of the percentage of stroke work (SW) variations, in terms of EC(50) values, induced by BRL(37344) alone (10 nmol l(-1)), and in presence of SR(59230) (10 nmol l(-1)), indicated a competitive antagonism of SR(59230). In addition to the classic positive inotropism, the non-specific beta agonist isoproterenol (100 nmol l(-1)) induced, in 30% of the preparations, a negative inotropic effect that was abrogated by pre-treatment with SR(59230), pointing to a beta3-mediated pathway. The BRL(37344)-induced negative inotropic effect was abolished by exposure to a G(i/o) proteins inhibitor pertussis toxin (PTx; 0.01 nmol l(-1)), suggesting a G(i/o)-dependent mechanism. Using L-N5(l-imino-ethyl)ornithine (L-NIO; 10 mumol l(-1)), as a nitric oxide (NO) synthase (NOS) blocker and haemoglobin (Hb; 1 mumol l(-1)), as a NO scavenger, we demonstrated that NO signalling is involved in the BRL(37344)-induced response. Pre-treatment with either an inhibitor of soluble guanylate cyclase (GC) 1H-(1,2,4) oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ; 10 mumol l(-1)), or an inhibitor of the cGMP-activated protein kinase (PKG) KT(5823) (100 nmol l(-1)), abolished the beta3-dependent negative inotropism, indicating the cGMP-PKG component as a crucial target of NO signalling. Taken together, our findings provide functional evidence for the presence of beta3-like adrenoceptors in the eel Anguilla anguilla heart identifying, for the first time in a working fish heart, the beta3-AR-dependent negative inotropy discovered in mammals.  (+info)