Noradrenaline inhibits pacemaker currents through stimulation of beta 1-adrenoceptors in cultured interstitial cells of Cajal from murine small intestine. (25/103)

1. Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous inward currents (pacemaker currents) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of noradrenaline on the pacemaker currents in cultured ICCs from murine small intestine were investigated by using whole-cell patch-clamp techniques at 30 degrees C. 2. Under current clamping, ICCs had a mean resting membrane potential of -58+/-5 mV and produced electrical slow waves. Under voltage clamping, ICCs produced pacemaker currents with a mean amplitude of -410+/-57 pA and a mean frequency of 16+/-2 cycles min(-1). 3. Under voltage clamping, noradrenaline inhibited the amplitude and frequency of pacemaker currents and increased resting currents in the outward direction in a dose-dependent manner. These effects were reduced by intracellular GDP beta S. 4. Noradrenaline-induced effects were blocked by propranolol (beta-adrenoceptor antagonist). However, neither prazosin (alpha(1)-adrenoceptor antagonist) nor yohimbine (alpha(2)-adrenoceptor antagonist) blocked the noradrenaline-induced effects. Phenylephrine (alpha(1)-adrenoceptor agonist) had no effect on the pacemaker currents, whereas isoprenaline (beta-adrenoceptor agonist) mimicked the effect of noradrenaline. Atenolol (beta(1)-adrenoceptor antagonist) blocked the noradrenaline-induced effects, but butoxamine (beta(2)-adrenoceptor antagonist) did not. In addition, BRL37344 (beta(3)-adrenoceptor agonist) had no effect on pacemaker currents. 5. 9-(Tetrahydro-2-furanyl)-9H-purine-6-amine (SQ-22536; adenylate cyclase inhibitor) and a myristoylated protein kinase A inhibitor did not inhibit the noradrenaline-induced effects and 8-bromo-cAMP had no effects on pacemaker currents. 8-Bromo-cGMP and SNAP inhibited pacemaker currents and these effects of SNAP were blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a guanylate cyclase inhibitor). However, ODQ did not block the noradrenaline-induced effects. 6. Neither tetraethylammonium (a voltage-dependent K(+) channel blocker), apamin (a Ca(2+)-dependent K(+) channel blocker) nor glibenclamide (an ATP-sensitive K(+) channel blocker) blocked the noradrenaline-induced effects. 7. The results suggest that noradrenaline-induced stimulation of beta(1)-adrenoceptors in the ICCs inhibits pacemaker currents, and that this is mediated by the activation of G-protein. Neither adenylate cyclase, guanylate cyclase nor a K(+) channel-dependent pathway are involved in this effect of noradrenaline.  (+info)

Overexpression of beta 1-adrenoceptors in adult rat ventricular myocytes enhances CGP 12177A cardiostimulation: implications for 'putative' beta 4-adrenoceptor pharmacology. (26/103)

1. CGP 12177A mediates cardiostimulation by activation of the 'putative' beta(4)-adrenoceptor; however, it has recently been reported that disruption of the beta(1)-adrenoceptor gene abolishes this effect. We have adenovirally overexpressed beta(1)-adrenoceptors in isolated, cultured adult rat ventricular cardiomyocytes and observed the inotropic potency of isoprenaline and CGP 12177A (in the presence of 1 microm propranolol). 2. Isoprenaline was a full inotropic agonist at rat ventricular myocytes (pD(2) 7.69+/-0.12). CGP 12177A was a nonconventional partial agonist (pD(2) 6.34+/-0.09), increasing inotropy and lusitropy, with an intrinsic activity of 0.34 and antagonised by bupranolol. 3. beta(1)-adrenoceptor overexpression enhanced the inotropic potency of isoprenaline by 11.7-fold (pD(2) 8.76+/-0.14) and CGP 12177A by 5.9-fold (7.11+/-0.10), respectively. Green fluorescent protein (GFP) overexpression did not alter the potency of isoprenaline or CGP 12177A (pD(2) 7.41+/-0.24 and pD(2) 6.60+/-0.50, respectively). 4. The cardiostimulant effects of CGP 12177A were enhanced by IBMX (phosphodiesterase inhibitor) and decreased by Rp-cAMPS (cAMP antagonist). CGP 12177A also increased cAMP levels. CGP 12177A but not isoprenaline initiated arrhythmias at lower concentrations following beta(1)-adrenoceptor overexpression. 5. (125)I-Cyanopindolol saturation binding in Adv.beta(1) myocytes demonstrated approximately 18-fold increase in beta(1)-adrenoceptors. (3)H-CGP 12177A saturation binding, in the presence of propranolol, increased approximately 5-fold following overexpression of beta(1)-adrenoceptors. 6. This study demonstrates enhanced cardiostimulation by CGP 12177A (in the presence of propranolol) in rat ventricular myocytes overexpressing beta(1)-adrenoceptors, mediated by a Gs/cAMP signalling pathway. 'Putative' beta(4)-adrenoceptor pharmacology appears to be mediated by activation of a novel affinity state of the beta(1)-adrenoceptor.  (+info)

Nitric oxide and cardiac muscarinic control in humans. (27/103)

Cardiac parasympathetic activity reduces susceptibility to potentially lethal ventricular arrhythmias in heart failure and ischemic heart disease. This influence is mediated in large part by antagonism of the adverse cardiac effects of sympathetic overactivity ("indirect" parasympathetic activity) in addition to the "direct" effects of muscarinic stimulation. Nitric oxide modulates parasympathetic cardiac signaling in some animal models, but human data are lacking. We have investigated the influence of endogenous nitric oxide on cardiac responses to parasympathetic stimulation in healthy humans. In 18 volunteers, we studied chronotropic and inotropic responses to muscarinic stimulation, both before and after prestimulation with isoproterenol. Cardiac muscarinic stimulation was achieved using an intravenous bolus of the short-acting cholinesterase inhibitor, edrophonium. Responses were assessed during a background infusion of a nitric oxide synthase inhibitor (N(G)-monomethyl-L-arginine [L-NMMA]), placebo (saline), or phenylephrine (vasoconstrictor control) in a single-blind, random order, crossover protocol. L-NMMA did not affect chronotropic responses to edrophonium alone (direct parasympathetic activity). The decrease in heart rate attributable to "indirect" parasympathetic activity (derived by comparison with the effect of edrophonium during concurrent adrenergic stimulation) was substantially attenuated by L-NMMA in comparison to both control infusions. No modification of muscarinic inotropic responses by L-NMMA was apparent in comparison to the vasoconstrictor control. Nitric oxide exerts a powerful facilitating influence on indirect (antiadrenergic) but not direct human cardiac parasympathetic control. Stimulation of the endogenous nitric oxide pathway might enhance parasympathetic protection against the adverse influences of cardiac sympathetic overactivity.  (+info)

Impaired gene expression of beta 1-adrenergic receptor, but not stimulatory G-protein Gs alpha, in rat ventricular myocardium treated with isoproterenol. (28/103)

We investigated the gene expression of beta(1)-adrenergic receptor (beta(1)AR) and stimulatory G-protein Gsalpha, important signal transduction elements for regulating heart rate and contractility, in ventricle after chronic treatment with isoproterenol (ISO) in rat. Rats were treated with ISO (4 mg/kg, intraperitoneal) twice a day for 4 d. Ventricle weight of the heart and ventricle weight/body weight ratio were increased by 23% and 25% compared with control, respectively. Positive inotropic responses to ISO in left atrial muscle preparations isolated from ISO-treated rats were markedly decreased. Northern blot hybridization showed that the mRNA transcript of beta(1)AR was significantly decreased in ventricle of ISO-treated rats, whereas Gsalpha mRNA level was unchanged. Present results demonstrate that the gene expression of myocardial beta(1)AR, but not Gsalpha, was decreased in rat myocardium of ISO-induced cardiac hypertrophy, and suggesting that decrease in the gene expression of beta(1)AR may be one of the mechanisms responsible for the diminished cardiac function.  (+info)

Effect of overexpressed adenylyl cyclase VI on beta 1- and beta 2-adrenoceptor responses in adult rat ventricular myocytes. (29/103)

1. Adenylyl cyclase VI (ACVI) is one of the most abundantly expressed beta adrenergic receptor (betaAR)-coupled cyclases responsible for cyclic AMP (cAMP) production within the mammalian myocardium. We investigated the role of ACVI in the regulation of cardiomyocyte contractility and whether it is functionally coupled with beta(1) adrenergic receptor (beta(1)AR). 2. Recombinant adenoviruses were generated for ACVI and for antisense to ACVI (AS). Adult rat ventricular myocytes were transfected with ACVI virus, AS or both (SAS). Adenovirus for green fluorescent protein (GFP) served as control. Myocyte contraction amplitudes (% shortening) and relaxation times (R50) were analysed. ACVI function was determined using cAMP assays. 3. ACVI-transfected cells demonstrated a strong 139 kDa ACVI protein band compared to controls. ACVI myocytes had higher steady-state intracellular cAMP levels than GFP myocytes when unstimulated (GFP vs ACVI=6.60+/-0.98 vs 14.2+/-2.1 fmol cAMP/viable cell, n=4, P<0.05) and in the presence of 1 microm isoprenaline or 10 microm forskolin. 4. ACVI myocytes had increased basal contraction (% shortening: GFP vs ACVI: 1.90+/-1.36 vs 3.91+/-2.29, P<0.0001) and decreased basal R50 (GFP vs ACVI: 62.6+/-24.2 ms (n=50) vs 45.0+/-17.2 ms (n=248), P<0.0001). ACVI myocyte responses were increased for forskolin (E(max): GFP=6.70+/-1.59 (n=6); ACVI=9.06+/-0.69 (n=14), P<0.01) but not isoprenaline. 5. ACVI myocyte responses were increased (E(max): GFP vs ACVI=3.16+/-0.77 vs 5.10+/-0.60, P<0.0001) to xamoterol (a partial beta(1)AR-selective agonist) under beta(2)AR blockade (+50 nm ICI 118, 551). AS decreased both control and ACVI-stimulated xamoterol responses (E(max): AS=2.59+/-1.42, SAS=1.38+/-0.5). ACVI response was not mimicked by IBMX. Conversely, response through beta(2) adrenergic receptor (beta(2)AR) was decreased in ACVI myocytes. 6. In conclusion, ACVI overexpression constitutively increases myocyte contraction amplitudes by raising cAMP levels. Native ACVI did not contribute to basal cAMP production or contraction amplitude and only to a minor extent to the forskolin response. beta(1)AR but not beta(2)AR coupling was dependent on ACVI.  (+info)

Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. (30/103)

The KCNQ1-G589D gene mutation, associated with a long-QT syndrome, has been shown to disrupt yotiao-mediated targeting of protein kinase A and protein phosphatase-1 to the I(Ks) channel. To investigate how this defect may lead to ventricular arrhythmia during sympathetic stimulation, we use integrative computational models of beta-adrenergic signaling, myocyte excitation-contraction coupling, and action potential propagation in a rabbit ventricular wedge. Paradoxically, we find that the KCNQ1-G589D mutation alone does not prolong the QT interval. But when coupled with beta-adrenergic stimulation in a whole-cell model, the KCNQ1-G589D mutation induced QT prolongation and transient afterdepolarizations, known cellular mechanisms for arrhythmogenesis. These cellular mechanisms amplified tissue heterogeneities in a three-dimensional rabbit ventricular wedge model, elevating transmural dispersion of repolarization and creating other T-wave abnormalities on simulated electrocardiograms. Increasing heart rate protected both single myocyte and the coupled myocardium models from arrhythmic consequences. These findings suggest that the KCNQ1-G589D mutation disrupts a critical link between beta-adrenergic signaling and myocyte electrophysiology, creating both triggers of cardiac arrhythmia and a myocardial substrate vulnerable to such electrical disturbances.  (+info)

The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. (31/103)

Beta-adrenoceptor antagonists ("beta-blockers") are one of the most widely used classes of drugs in cardiovascular medicine (hypertension, ischaemic heart disease and increasingly in heart failure) as well as in the management of anxiety, migraine and glaucoma. Where known, the mode of action in cardiovascular disease is from antagonism of endogenous catecholamine responses in the heart (mainly at beta1-adrenoceptors), while the worrisome side effects of bronchospasm result from airway beta2-adrenoceptor blockade. The aim of this study was to determine the selectivity of beta-antagonists for the human beta-adrenoceptor subtypes. (3)H-CGP 12177 whole cell-binding studies were undertaken in CHO cell lines stably expressing either the human beta1-, beta2- or the beta3-adrenoceptor in order to determine the affinity of ligands for each receptor subtype in the same cell background. In this study, the selectivity of well-known subtype-selective ligands was clearly demonstrated: thus, the selective beta1 antagonist CGP 20712A was 501-fold selective over beta2 and 4169-fold selective over beta3; the beta2-selective antagonist ICI 118551 was 550- and 661-fold selective over beta1 and beta3, respectively, and the selective beta3 compound CL 316243 was 10-fold selective over beta2 and more than 129-fold selective over beta1. Those beta2-adrenoceptor agonists used clinically for the treatment of asthma and COPD were beta2 selective: 29-, 61- and 2818-fold for salbutamol, terbutaline and salmeterol over beta1, respectively. There was little difference in the affinity of these ligands between beta1 and beta3 adrenoceptors. The clinically used beta-antagonists studied ranged from bisoprolol (14-fold beta1-selective) to timolol (26-fold beta2-selective). However, the majority showed little selectivity for the beta1- over the beta2-adrenoceptor, with many actually being more beta2-selective. This study shows that the beta1/beta2 selectivity of most clinically used beta-blockers is poor in intact cells, and that some compounds that are traditionally classed as "beta1-selective" actually have higher affinity for the beta2-adrenoceptor. There is therefore considerable potential for developing more selective beta-antagonists for clinical use and thereby reducing the side-effect profile of beta-blockers.  (+info)

Beta1 adrenergic receptor-mediated enhancement of hippocampal CA3 network activity. (32/103)

Norepinephrine is an endogenous neurotransmitter distributed throughout the mammalian brain. In higher cortical structures such as the hippocampus, norepinephrine, via beta adrenergic receptor (AR) activation, has been shown to reinforce the cognitive processes of attention and memory. In this study, we investigated the effect of beta1AR activation on hippocampal cornu ammonis 3 (CA3) network activity. AR expression was first determined using immunocytochemistry with antibodies against beta1ARs, which were found to be exceptionally dense in hippocampal CA3 pyramidal neurons. CA3 network activity was then examined in vitro using field potential recordings in rat brain slices. The selective betaAR agonist isoproterenol caused an enhancement of hippocampal CA3 network activity, as measured by an increase in frequency of spontaneous burst discharges recorded in the CA3 region. In the presence of alphaAR blockade, concentration-response curves for isoproterenol, norepinephrine, and epinephrine suggested that a beta1AR was involved in this response, and the rank order of potency was isoproterenol > norepinephrine = epinephrine. Finally, equilibrium dissociation constants (pK(b)) of subtype-selective betaAR antagonists were functionally determined to characterize the AR subtype modulating hippocampal CA3 activity. The selective beta1AR antagonists atenolol and metoprolol blocked isoproterenol-induced enhancement, with apparent K(b) values of 85 +/- 36 and 3.9 +/- 1.7 nM, respectively. In contrast, the selective beta2AR antagonists ICI-118,551 and butoxamine inhibited isoproterenol-mediated enhancement with apparent low affinities (K(b) of 222 +/- 61 and 9268 +/- 512 nM, respectively). Together, this pharmacological profile of subtype-selective betaAR antagonists indicates that in this model, beta1AR activation is responsible for the enhanced hippocampal CA3 network activity initiated by isoproterenol.  (+info)