Conservation of the cardiostimulant effects of (-)-norepinephrine across Ser49Gly and Gly389Arg beta(1)-adrenergic receptor polymorphisms in human right atrium in vitro. (17/103)

OBJECTIVE: The goal of this study was to determine whether the cardiostimulant effects of the endogenous beta(1)-adrenergic receptor (AR) agonist, (-)-norepinephrine are modified by polymorphic (Serine49Glycine [Ser49Gly], Glycine389Arginine [Gly389Arg]) variants of beta(1)-ARs in the nonfailing adult human heart. BACKGROUND: Human heart beta(1)-ARs perform a crucial role in mediating the cardiostimulant effects of (-)-norepinephrine. An understanding of the significance of Ser49Gly and Gly389Arg polymorphisms in the human heart is beginning to emerge, but not as yet in adult patients who have coronary artery disease (CAD). METHODS: The potency and maximal effects of (-)-norepinephrine at beta(1)-ARs (in the presence of beta(2)-AR blockade with 50 nM ICI 118,551 [erythro-DL-1(7-methylindan-4-yloxy)-3-isopropylamino-butan-2-ol]) for changes in contractile force and shortening of contractile cycle duration were determined in human right atrium in vitro from 87 patients undergoing coronary artery bypass grafting who were taking beta-blockers before surgery. A smaller sample of patients (n = 20) not taking beta-blockers was also investigated. Genotyping for two beta(1)-AR polymorphisms (Ser49Gly and Gly389Arg) was determined from a sample of blood taken at the time of surgery. RESULTS: (-)-Norepinephrine caused concentration-dependent increases in contractile force and reductions in time to reach peak force and time to reach 50% relaxation. There were no differences in the potency or maximal effects of (-)-norepinephrine in the right atrium from patients with different Ser49Gly and Gly389Arg polymorphisms. CONCLUSIONS: The cardiostimulant effects of (-)-norepinephrine at beta(1)-ARs were conserved across Ser49Gly and Gly389Arg polymorphisms in the right atrium of nonfailing hearts from patients with CAD managed with or without beta-blockers.  (+info)

Evidence against beta 3-adrenoceptors or low affinity state of beta 1-adrenoceptors mediating relaxation in rat isolated aorta. (18/103)

1 The presence of beta(3)-adrenoceptors and the low affinity state of the beta(1)-adrenoceptor (formerly "putative beta(4)-adrenoceptor") was investigated in ring preparations of rat isolated aorta preconstricted with phenylephrine or prostaglandin F(2alpha) (PGF(2alpha)). Relaxant responses to isoprenaline, selective beta(3)-adrenoceptor agonists (BRL 37344, SR 58611A, CL 316243) and non-conventional partial agonists (CGP 12177A, cyanopindolol, pindolol) were obtained. 2 In phenylephrine-constricted, but not PGF(2alpha)-constricted rings, relaxations to isoprenaline showed a propranolol-resistant component. 3 In phenylephrine-constricted rings, relaxations to BRL 37344 (pEC(50), 4.64) and SR 58611A (pEC(50), 4.94) were not antagonized by the selective beta(3)-adrenoceptor antagonist SR 59230A (< or =1 microM). CL 316243 (< or =100 microM) failed to produce relaxation. In PGF(2alpha)-constricted rings only SR 58611A produced relaxation, which was not affected by SR 59230A (< or =3 microM). 4 Non-conventional partial agonists produced relaxation in phenylephrine-constricted but not PGF(2alpha)-constricted rings. The relaxation to CGP 12177A was unaffected by SR 59230A (< or =1 microM) or by CGP 20712A (10 microM), reported to block the low affinity state of the beta(1)-adrenoceptor. 5 beta-adrenoceptor antagonists also produced relaxation in phenylephrine-constricted rings with an order of potency of (pEC(50) values): bupranolol (5.5) approximately 38;SR 59230A (5.47) approximately 38;cyanopindolol (5.47)>pindolol (5.30)>alprenolol (5.10)>propranolol (4.83)>ICI 118551 (4.60)>CGP 12177A (4.38) approximately 38;CGP 20712A (4.35). Bupranolol (100 microM), alprenolol (30 microM), propranolol (100 microM) and SR 59230A (10 microM) produced no relaxation in PGF(2alpha)-constricted rings. 6 These results provide no evidence for the presence of functional beta(3)-adrenoceptors or the low affinity state of the beta(1)-adrenoceptor in rat aorta.  (+info)

Greater inotropic and cyclic AMP responses evoked by noradrenaline through Arg389 beta 1-adrenoceptors versus Gly389 beta 1-adrenoceptors in isolated human atrial myocardium. (19/103)

1. We studied the biochemical and contractile responses of isolated human myocardial tissue expressing native receptor variants of the 389G>R beta(1)-adrenoceptor polymorphism. 2. Right atrial appendage was obtained from homozygous RR patients (n=37) and homozygous GG patients (n=17) undergoing elective cardiac surgery. The positive inotropic effect of noradrenaline in these tissues, mediated through beta(1)-adrenoceptors, was studied using electrically stimulated (1 Hz) atrial strips, as well as the effects of noradrenaline on cyclic AMP levels and cyclic AMP-dependent protein kinase. 3. Tissue from RR homozygotes (n=14) showed significantly increased inotropic potency to noradrenaline (-log EC(50), M=6.92+/-0.12) compared to GG homozygotes (n=8, -log EC(50), M=6.36+/-0.11, P<0.005). This difference was not dependent on tissue basal force. 4. Tissue cyclic AMP levels (pmol mg(-1)) were also greater in RR homozygotes (basal 34.8+/-3.7 n=12, 300 nM noradrenaline 41.4+/-7.6 n=9, 30 micro M noradrenaline 45.2+/-3.2 n=22, 0.2 mM isoprenaline 48.3+/-4.2 n=16) compared to GG homozygotes (basal 30.7+/-4.4 n=5, 300 nM noradrenaline 32.6+/-6.92 n=5, 30 micro M noradrenaline 38.1+/-3.1 n=8, 0.2 mM isoprenaline 42.6+/-5.2 n=6, P=0.007). There were no differences between the variants in terms of cyclic AMP-dependent protein kinase activity. 5. These data provide the first evidence that enhanced G-protein coupling of the R389 beta(1)-adrenoceptor variant reported in rodent fibroblast expression systems is also present in native human receptors. The functional consequence of this is to significantly alter the inotropic potency of beta(1)-adrenoceptor activation depending on its genotype at the 389 position.  (+info)

Differences in the bioenergetic response of the isolated perfused rat heart to selective beta1- and beta2-adrenergic receptor stimulation. (20/103)

BACKGROUND: In the heart, striking functional differences exist after stimulation of the beta1- and beta2-adrenergic receptor (AR) subtypes. These may be linked to differences in metabolic response during beta1- and beta2-AR stimulation. METHODS AND RESULTS: The relation between work and metabolism was examined during selective beta1- and beta2-AR stimulation (beta1 and beta2 groups, respectively) in the isolated perfused rat heart. Measurements were made of rate-pressure product (RPP=LV developed pressure x heart rate), phosphorus-containing metabolites, and pH by 31P nuclear magnetic resonance spectroscopy and of O2 consumption by fiber-optic oximetry. Experiments were performed under high constant flow (HCF) and under flow-limiting conditions (constant pressure, CP). Despite substantially greater RPP increases relative to baseline during beta1-AR (HCF, 475%; CP, 150%) than beta2-AR (HCF, 90%; CP, 72%) stimulation, the relative decrease in the intracellular energy charge relative to baseline was similar for the beta1 (HCF, 49%; CP, 64%) and beta2 (HCF, 59%; CP, 55%) groups. For each group, an increase in oxygen consumption (MVO2) occurred commensurate with workload during HCF (beta1, 141%; beta2, 30%). During CP, however, the MVO2 increase was similar (beta1, 39%; beta2, 34%), despite the large RPP difference between the groups. During both protocols, there was greater acidosis during beta1-AR than during beta2-AR stimulation. Thus, at a given workload, intracellular energy charge decreased, and MVO2 (CP) increased to a greater extent during beta2 than beta1-AR stimulation. CONCLUSIONS: The bioenergetic differences are consistent with access to an additional substrate pool during beta1-AR stimulation. This may occur via increased glycogenolysis during beta1-AR stimulation, facilitating increased energy production by oxidative phosphorylation, and under flow-limiting conditions, anaerobic glycolysis.  (+info)

Partial agonist activity of bucindolol is dependent on the activation state of the human beta1-adrenergic receptor. (21/103)

BACKGROUND: In contrast to other beta-blockers, bucindolol has failed to reduce mortality in patients with chronic heart failure. It is currently debated whether this is due to partial agonist activity of this agent. We investigated whether conflicting results previously reported concerning the intrinsic activity of bucindolol can be explained by species differences or by different activation states of beta-adrenergic receptors (beta-ARs) in the respective tissues. METHODS AND RESULTS: On isolated right atria from transgenic mice with cardiac overexpression of human beta1-ARs, bucindolol led to a greater increase in beating frequency (P<0.05) compared with wild-type mice. The increase amounted to 47% of the effect of xamoterol and was blocked by propranolol. On isolated, electrically stimulated, left ventricular muscle-strip preparations from failing human myocardium, bucindolol did not change the force of contraction under control conditions. In myocardial preparations pretreated with metoprolol (30 micromol/L, 90 minutes, subsequent washout), bucindolol significantly increased the force of contraction (P<0.001 vs control). In nonfailing atrial myocardium, isoproterenol pretreatment (1 micromol/L, 60 minutes) abolished the positive inotropic effect of xamoterol that was present under control conditions (P<0.05 vs control). The inotropic effects of bucindolol or xamoterol were inversely correlated to the inotropic response to forskolin in the respective specimens (r=-0.75 and -0.74, respectively; P<0.005). CONCLUSIONS: We conclude that bucindolol is a partial agonist at the human beta1-AR. In human failing myocardium, its partial agonist activity is masked by increased activation states of beta-ARs and is unmasked after in vitro pretreatment with metoprolol. Thus, the partial agonist activity of bucindolol is dependent on the activation state of the human beta1-AR.  (+info)

Atypical beta-adrenoceptors, different from beta 3-adrenoceptors and probably from the low-affinity state of beta 1-adrenoceptors, relax the rat isolated mesenteric artery. (22/103)

(1) We examined whether beta3- and/or atypical beta-adrenoceptors relax the rat isolated mesenteric artery. (2) Mesenteric arteries precontracted with phenylephrine were relaxed by beta-agonists with the following potencies (pD2): nonselective agonist isoprenaline (6.00)>nonconventional partial agonist cyanopindolol (5.45)>beta2-agonist fenoterol (4.98)>nonconventional partial agonist CGP 12177 (4.19)>beta3-agonist ZD 2079 (3.72). The beta3-agonist CL 316243 1 mm relaxed the vessel only marginally. (3) The concentration-response curves (CRCs) for cyanopindolol, CGP 12177 and ZD 2079 were not affected by the nonselective beta-antagonist propranolol 0.3 microm, the beta2-antagonist ICI 118551 1 microm and by CL 316243 60 microm, but shifted to the right by bupranolol (pA2 5.3-5.7), CGP 20712 (5.4) and SR 59230A (6.5-6.7) (the latter three drugs block atypical and/or beta3-adrenoceptors at high concentrations). (4) The CRC for isoprenaline was shifted to the right by propranolol (pA2 7.0) but, in the presence of propranolol 0.3 microm, not affected by SR 59230A 1 microm. The CRC for fenoterol was shifted to the right by propranolol (pA2 6.9) and ICI 118551 (6.8). (5) Removal of endothelium diminished the vasorelaxant effects of cyanopindolol, CGP 12177 and ZD 2079. (6) Fenoterol and cyanopindolol also relaxed (endothelium-intact) mesenteric arteries precontracted with serotonin. The relaxant effect of cyanopindolol was antagonized by bupranolol to about the same degree as in phenylephrine-contracted vessels. (7) In conclusion, beta2- and atypical beta-adrenoceptors (but not beta3-adrenoceptors) relax the rat mesenteric artery. The atypical beta-adrenoceptor, which is partially located endothelially, may differ from the low-affinity state of the beta1-adrenoceptor.  (+info)

Protein kinase C regulates functional coupling of beta1-adrenergic receptors to Gi/o-mediated responses in cardiac myocytes. (23/103)

The effect of protein kinase C (PKC) activation on beta1-adrenergic receptor (beta1-AR) regulation of the cardiac L-type Ca2+ current (ICa,L) was studied using the whole-cell patch clamp technique. Treatment of guinea pig ventricular myocytes with phorbol-12,13-dibutyrate (PDBu) caused a significant decrease in ICa,L sensitivity to stimulation by submaximal beta1-AR activation using isoproterenol (Iso). This decrease in sensitivity was also associated with the ability of higher concentrations of Iso to directly inhibit the stimulatory response. PDBu treatment produced similar effects on H2 histamine receptor-mediated ICa,L responses. In the presence of PDBu, higher concentrations of Iso inhibited the histamine stimulated ICa,L, and this effect was blocked by a selective beta1-AR antagonist. Higher concentrations of histamine also inhibited the Iso stimulated ICa,L, and this effect was blocked by a selective H2 receptor antagonist. The effects of PDBu were blocked by the PKC inhibitor bisindolylmaleimide I, and they were not mimicked by the inactive phorbol ester 4alpha-phorbol-12,13-didecanoate. The inhibitory effects of Iso and histamine were significantly reduced when Gi/o mediated responses were blocked with pertussis toxin. These results suggest that PKC promotes coupling of cardiac beta1-adrenergic and H2 histamine receptors to Gi/o mediated inhibitory responses.  (+info)

Differences in endosomal targeting of human (beta)1- and (beta)2-adrenergic receptors following clathrin-mediated endocytosis. (24/103)

The beta(2)-adrenergic receptor (beta(2)AR) undergoes agonist-mediated endocytosis via clathrin-coated pits by a process dependent on both arrestins and dynamin. Internalization of some G protein-coupled receptors, however, is independent of arrestins and/or dynamin and through other membrane microdomains such as caveolae or lipid rafts. The human beta(1)AR is less susceptible to agonist-mediated internalization than the beta(2)-subtype, and its endocytic route, which is unknown, may be different. We have found that (i) co-expression of arrestin-2 or -3 enhanced the internalization of both subtypes whereas co-expression of dominant-negative mutants of arrestin-2 or dynamin impaired their internalization, as did inhibitors of clathrin-mediated endocytosis. (ii) Agonist stimulation increased the phosphorylation of beta(2)AR but not beta(1)AR. (iii) In response to agonist, each subtype redistributed from the cell surface to a distinct population of cytoplasmic vesicles; those containing beta(1)AR were smaller and closer to the plasma membrane whereas those containing beta(2)AR were larger and more perinuclear. (iv) When subcellular fractions from agonist-treated cells were separated by sucrose density gradient centrifugation, all of the internalized beta(2)AR appeared in the lighter endosomal-containing fractions whereas some of the internalized beta(1)AR remained in the denser plasma membrane-containing fractions. (v) Both subtypes recycled with similar kinetics back to the cell surface upon removal of agonist; however, recycling of beta(2)AR but not beta(1)AR was inhibited by monensin. Based on these results, we propose that the internalization of beta(1)AR is both arrestin- and dynamin-dependent and follows the same clathrin-mediated endocytic pathway as beta(2)AR. But during or after endocytosis, beta(1)AR and beta(2)AR are sorted into different endosomal compartments.  (+info)