The enzyme-bound copper of dopamine beta-monooxygenase. Reaction with copper chelators, preparation of the apoprotein, and kinetics of the reconstitution by added copper. (49/1268)

The enzyme-bound copper of dopamine beta-monooxygenase reacted rapidly with the chelator bathocuproine disulfonate; the reaction in the presence of ascorbate was completed in 2 min at 25 degrees C with 1mM chelator. This reaction and also the reaction with EDTA could be used to prepare the apoenzyme, which in both cases was completely reactivated in less than 10 s. The reactivation data gave apparent Michaelis constants for copper 0.03 -- 0.2 micron. Trace amounts of copper in buffers and assay mixtures gave significant reactivation without added copper, unless they had been treated with a chelating resin. Titrations using the different chelation rates of free and enzyme-bound copper indicated that four copper atoms are bound per enzyme molecule of four subunits. The native enzyme was more stable against thermal inactivation than the apoenzyme, but this stability was only partially restored by addition of copper to the apoenzyme.  (+info)

Cycloheximide increases proenkephalin and tyrosine hydroxylase gene expression in rat adrenal medulla. (50/1268)

The effect of cycloheximide (CHX; 5 mg/kg) on proenkephalin (proENK) and tyrosine hydroxylase (TH) mRNA expression in rat central and peripheral nervous systems was studied. CHX increased proENK and TH mRNA levels in the adrenal gland, but not in hippocampus, striatum, midbrain, brainstem, pituitary, and hypothalamus. The pretreatment with actinomycin D (0.5 mg/kg) significantly decreased CHX-induced proENK and TH mRNA expression, suggesting that the CHX-dependent increase of these mRNA levels may be caused by the increase of transcriptional activity rather than RNA stabilization. To investigate the factors involved in CHX-induced proENK and TH mRNA expression, the effect of CHX on activator protein-1 (AP-1), cAMP response element (CRE) binding protein (CREB), and glucocorticoid response element (GRE) was tested. In AP-1, the basal expression of Fra-2 and c-Jun proteins and AP-1 DNA binding activity in the adrenal medulla was higher than other tissues tested, but CHX reduced these protein levels and AP-1 DNA binding activity. In CREB, CHX time dependently increased the level of phospho-CREB without altering total CRE level and CRE DNA binding activity. Furthermore, phospho-CREB actively participated in CRE DNA binding activity. In GRE, although CHX increased plasma and adrenal corticosterone level, RU486 (10 mg/kg) reduced CHX-induced proENK, but not TH, mRNA level in a partial manner. These results suggest that the basal expression of proENK and TH mRNA transcription in the adrenal gland seems to be tonically inhibited by de novo protein synthesis. In addition, CHX-dependent increase of proENK and TH mRNA expression in the adrenal medulla is well correlated with phospho-CREB level, but not AP-1. Finally, glucocorticoid seems to be involved at least partially in CHX-dependent proENK, but not TH, mRNA expression in the adrenal medulla.  (+info)

Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. (51/1268)

The evaluation of peptide receptors in man is needed not only to discover the physiological target tissues of a given peptide but also to identify diseases with a sufficient receptor overexpression for diagnostic or therapeutic interventions. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors have been evaluated in human tumors and in their tissues of origin using in vitro receptor autoradiography with 125I-VIP or 125I-acetyl-PACAP-27 in tissue sections. The VIP/PACAP receptor subtypes VPAC1, VPAC2, and PAC1 were evaluated in these tissues by determining the rank order of potencies of VIP and PACAP as well as VPAC1- and VPAC2-selective analogues. The VIP/PACAP receptors expressed in the great majority of the most frequently occurring human tumors, including breast (100% receptor incidence), prostate (100%), pancreas (65%), lung (58%), colon (96%), stomach (54%), liver (49%), and urinary bladder (100%) carcinomas as well as lymphomas (58%) and meningiomas (100%), are predominantly of the VPAC1 type. Their cells or tissues of origin, i.e., hepatocytes, breast lobules and ducts, urothelium, prostate glands, pancreatic ducts, lung acini, gastrointestinal mucosa, and lymphocytes, also predominantly express VPAC1. Leiomyomas predominantly express VPAC2 receptors, whereas paragangliomas, pheochromocytomas, and endometrial carcinomas preferentially express PAC1 receptors. Conversely, VPAC2 receptors are found mainly in smooth muscle (i.e., stomach), in vessels, and in stroma (e.g., of the prostate), whereas PAC1 receptors are present in the adrenal medulla and in some uterine glands. Whereas the very wide distribution of VIP/PACAP receptors in the normal human body is indicative of a key role of these peptides in human physiology, the high VIP/PACAP receptor expression in tumors may represent the molecular basis for clinical applications of VIP/PACAP such as in vivo scintigraphy and radiotherapy of tumors as well as VIP/PACAP analogue treatment for tumor growth inhibition.  (+info)

Characterization of the human cysteinyl leukotriene 2 receptor. (52/1268)

The contractile and inflammatory actions of the cysteinyl leukotrienes (CysLTs), LTC(4), LTD(4), and LTE(4), are thought to be mediated through at least two distinct but related CysLT G protein-coupled receptors. The human CysLT(1) receptor has been recently cloned and characterized. We describe here the cloning and characterization of the second cysteinyl leukotriene receptor, CysLT(2), a 346-amino acid protein with 38% amino acid identity to the CysLT(1) receptor. The recombinant human CysLT(2) receptor was expressed in Xenopus oocytes and HEK293T cells and shown to couple to elevation of intracellular calcium when activated by LTC(4), LTD(4), or LTE(4). Analyses of radiolabeled LTD(4) binding to the recombinant CysLT(2) receptor demonstrated high affinity binding and a rank order of potency for competition of LTC(4) = LTD(4) LTE(4). In contrast to the dual CysLT(1)/CysLT(2) antagonist, BAY u9773, the CysLT(1) receptor-selective antagonists MK-571, montelukast (Singulair(TM)), zafirlukast (Accolate(TM)), and pranlukast (Onon(TM)) exhibited low potency in competition for LTD(4) binding and as antagonists of CysLT(2) receptor signaling. CysLT(2) receptor mRNA was detected in lung macrophages and airway smooth muscle, cardiac Purkinje cells, adrenal medulla cells, peripheral blood leukocytes, and brain, and the receptor gene was mapped to chromosome 13q14, a region linked to atopic asthma.  (+info)

Bidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells. (53/1268)

Angiotensin II (AngII) receptors couple to a multitude of different types of G-proteins resulting in activation of numerous signaling pathways. In this study we examined the consequences of this promiscuous G-protein coupling on secretion. Chromaffin cells were voltage-clamped at -80 mV in perforated-patch configuration, and Ca(2+)-dependent exocytosis was evoked with brief voltage steps to +20 mV. Vesicle fusion was monitored by changes in membrane capacitance (DeltaC(m)), and released catecholamine was detected with single-cell amperometry. Ca(2+) signaling was studied by recording voltage-dependent Ca(2+) currents (I(Ca)) and by measuring intracellular Ca(2+) ([Ca(2+)](i)) with fura-2 AM. AngII inhibited I(Ca) (IC(50) = 0.3 nm) in a voltage-dependent, pertussis toxin (PTX)-sensitive manner consistent with G(i/o)-protein coupling to Ca(2+) channels. DeltaC(m) was modulated bi-directionally; subnanomolar AngII inhibited depolarization-evoked exocytosis, whereas higher concentrations, in spite of I(Ca) inhibition, potentiated DeltaC(m) fivefold (EC(50) = 3.4 nm). Potentiation of exocytosis by AngII involved activation of phospholipase C (PLC) and Ca(2+) mobilization from internal stores. PTX treatment did not affect AngII-dependent Ca(2+) mobilization or facilitation of exocytosis. However, protein kinase C (PKC) inhibitors decreased the facilitatory effects but not the inhibitory effects of AngII on stimulus-secretion coupling. The AngII type 1 receptor (AT1R) antagonist losartan blocked both inhibition and facilitation of secretion by AngII. The results of this study show that activation of multiple types of G-proteins and transduction pathways by a single neuromodulator acting through one receptor type can produce concentration-dependent, bi-directional regulation of exocytosis.  (+info)

Fos-related antigen 2: potential mediator of the transcriptional activation in rat adrenal medulla evoked by repeated immobilization stress. (54/1268)

The precise mechanisms by which beneficial responses to acute stress are transformed into long-term pathological effects of chronic stress are largely unknown. Western blot analyses revealed that members of the AP1 transcription factor family are differentially regulated by single and repeated stress in the rat adrenal medulla, suggesting distinct roles in establishing stress-induced patterns of gene expression in this tissue. The induction of c-fos was transient, whereas marked elevation of long-lasting Fos-related antigens, including Fra2, was observed after repeated immobilization. We investigated DNA protein interactions at the AP1-like promoter elements of two stress-responsive genes, tyrosine hydroxylase and dopamine beta-hydroxylase. Increased DNA-binding activity was displayed in adrenomedullary extract from repeatedly stressed rats, which was predominantly composed of c-Jun- and Fra2-containing dimers. The induction of Fra2 and increased AP1-like binding activity was reflected in sustained transcriptional activation of tyrosine hydroxylase and dopamine beta-hydroxylase genes after repeated episodes of stress. The functional link between Fra2 and regulation of tyrosine hydroxylase and dopamine beta-hydroxylase transcription was confirmed in PC12 cells coexpressing this factor and the corresponding promoter-reporter gene constructs. These studies emphasize the potential importance of stress-evoked increases in the expression of the Fra2 gene for in vivo adaptations of the adrenal catecholamine producing system.  (+info)

Effects of adrenalectomy and adrenal enucleation on liquid gastric emptying in rats. (55/1268)

The effects of adrenalectomy and adrenal enucleation on liquid gastric emptying were studied in male Wistar rats that were adrenalectomized, adrenal enucleated (AE) or sham operated (SH). The animals in the first group had free access to a 1% NaCl solution (ADS), while the animals in the second and third groups were divided into two subgroups, which ingested either tap water (AEW, SHW) or 1% NaCl solution (AES, SHS). The gastric emptying study was performed on the 16th post-operative day. Three test meals labeled with phenol red (6 mg/dl) were used (0.9% NaCl, 1.8% NaCl and 5% glucose). Percent gastric retention was determined 10 min after orogastric infusion of the NaCl test meals and 15 min after the glucose meal. Gastric retention of the ADS subgroup was significantly lower (P<0. 01) (median = 19.8% vs 25.5% for SHW, vs 31.9% for SHS, vs 25.7% for AEW, and vs 27.1% for AES) for the 0.9% NaCl test meal and for the 1. 8% NaCl test meal (33.5% for ADS vs 47.5% for AEW and 50.6% for AES). When 5% glucose was used as a test meal, gastric retention was similar for all subgroups. These results suggest that ablation of the adrenal cortex results in increased gastric emptying of an isosmolar NaCl meal.  (+info)

The sea anemone toxin Bc2 induces continuous or transient exocytosis, in the presence of sustained levels of high cytosolic Ca2+ in chromaffin cells. (56/1268)

We have isolated and characterized a new excitatory toxin from the venom of the sea anemone Bunodosoma caissarum, named Bc2. We investigated the mechanism of action of the toxin on Ca(2+)-regulated exocytosis in single bovine adrenal chromaffin cells, monitoring simultaneously fura-2 fluorescence measurements and electrochemical recordings using a carbon fiber microelectrode. Bc2 induced quantal release of catecholamines in a calcium-dependent manner. This release was associated with a sustained rise in cytosolic Ca(2+) and displayed two different patterns of response: a continuous discharge of prolonged duration that changed to a transient burst as the toxin concentration (or incubation time) increased. Continuous secretion was dependent on the activity of native voltage-dependent Ca(2+) channels and showed a pattern similar to that of alpha-latrotoxin; however, its kinetics adjusted better to that of continuous cell depolarization with high K(+) concentration. In contrast, transient secretion was independent of Ca(2+) entry through native voltage-dependent Ca(2+) channels and showed inhibition of late vesicle fusion that was accompanied by "freezing" of F-actin disassembly. These new features make Bc2 a promising new tool for studying the machinery of neurotransmitter release.  (+info)