Molecular cloning of endopin 1, a novel serpin localized to neurosecretory vesicles of chromaffin cells. Inhibition of basic residue-cleaving proteases by endopin 1. (33/1268)

Serpins represent a diverse class of endogenous protease inhibitors that regulate important biological functions. In consideration of the importance of regulated proteolysis within secretory vesicles for the production of peptide hormones and neurotransmitters, this study revealed the molecular identity of a novel serpin, endopin 1, that is localized to neurosecretory vesicles of neuropeptide-containing chromaffin cells (chromaffin granules). Endopin 1 of 68-70 kDa was present within isolated chromaffin granules. Stimulated cosecretion of endopin 1 with chromaffin granule components, [Met]enkephalin and a cysteine protease known as "prohormone thiol protease," demonstrated localization of endopin 1 to functional secretory vesicles. Punctate, discrete immunofluorescence cellular localization of endopin 1 in chromaffin cells was consistent with its secretory vesicle localization. Endopin 1 contains a unique reactive site loop with Arg as the predicted P1 residue, suggesting inhibition of basic residue-cleaving proteases; indeed, trypsin was potently inhibited (K(i(app)) of 5 nM), and plasmin was moderately inhibited. Although endopin 1 possesses homology with alpha(1)-antichymotrypsin, chymotrypsin was not inhibited. Moreover, endopin 1 inhibited the chromaffin granule prohormone thiol protease (involved in proenkephalin processing). These results suggest a role for the novel serpin, endopin 1, in regulating basic residue-cleaving proteases within neurosecretory vesicles of chromaffin cells.  (+info)

Melatonin inhibits the central sympatho-adrenomedullary outflow in rats. (34/1268)

Central effects of melatonin on the sympatho-adrenomedullary outflow were investigated in urethane-anesthetized rats. In the intact animals, intracerebroventricularly (i.c.v.) administered interleukin-1beta (IL-1beta) (100 ng/animal) slightly, but significantly, elevated the plasma level of noradrenaline (NA), but not the level of adrenaline (Ad). Melatonin (100 microg/animal, i.c.v.) did not modulate the effects of IL-1beta on plasma levels of catecholamines. In the pinealectomized animals, however, the same dose of IL-1beta markedly elevated plasma levels of both Ad and NA, and the elevation of Ad was more potent than that of NA. In these pinealectomized animals, the serum level of melatonin was significantly lower than that in the sham-operated control animals. Furthermore, the IL-1beta-induced elevations of plasma catecholamines in these pinealectomized animals were attenuated by i.c.v. administered melatonin. These results suggest that melatonin plays an inhibitory role in the central regulation of sympatho-adrenomedullary outflow in rats.  (+info)

Fine structure of host-graft relationships between transplanted chromaffin cells and CNS. (35/1268)

Our laboratory studies have shown that transplantation of adrenal medullary tissue or isolated chromaffin cells into central nervous system (CNS) pain modulatory regions (i.e., periaqueductal gray and subarachnoid lumbar spinal cord) can reduce pain sensitivity of rats in both acute and chronic pain. The analgesia produced by these transplants is thought to result from release of both opiate peptides and catecholamines. Morphologically, these animal studies also suggest that there is no development of tolerance over long periods of time, and the transplanted chromaffin cells appear to be robust and well integrated with the host tissue. In our initial clinical studies, where allografts of adrenal medullary tissue were transplanted intrathecally to relieve intractable cancer pain, patients obtained significant and long-lasting pain relief. Increased cerebrospinal fluid (CSF) levels of metenkephalin were correlated with the decreased pain scores. Histology of autopsy tissue obtained from two patients with 1 year transplants revealed viable transplanted chromaffin cells. Because of the limited availability of human adrenal glands, sources of xenogeneic chromaffin cells will need to be identified if effective transplantation therapy for chronic pain is to be developed further.  (+info)

P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. (36/1268)

We have used combined membrane capacitance measurements (C(m)) and voltage-clamp recordings to examine the mechanisms underlying modulation of stimulus-secretion coupling by a G(i/o)-coupled purinoceptor (P2Y) in adrenal chromaffin cells. P2Y purinoceptors respond to extracellular ATP and are thought to provide an important inhibitory feedback regulation of catecholamine release from central and sympathetic neurons. Inhibition of neurosecretion by other G(i/o)-protein-coupled receptors may occur by either inhibition of voltage-operated Ca(2+) channels or modulation of the exocytotic machinery itself. In this study, we show that the P2Y purinoceptor agonist 2-methylthio ATP (2-MeSATP) significantly inhibits Ca(2+) entry and changes in C(m) evoked by single 200 msec depolarizations or a train of 20 msec depolarizations (2.5 Hz). We found that P2Y modulation of secretion declines during a train such that only approximately 50% of the modulatory effect remains at the end of a train. The inhibition of both Ca(2+) entry and DeltaC(m) are also attenuated by large depolarizing prepulses and treatment with pertussis toxin. Inhibition of N-type, and to lesser extent P/Q-type, Ca(2+) channels contribute to the modulation of exocytosis by 2-MeSATP. The Ca(2+)-dependence of exocytosis triggered by either single pulses or trains of depolarizations was unaffected by 2-MeSATP. When Ca(2+) channels were bypassed and exocytosis was evoked by flash photolysis of caged Ca(2+), the inhibitory effect of 2-MeSATP was not observed. Collectively, these data suggest that inhibition of exocytosis by G(i/o)-coupled P2Y purinoceptors results from inhibition of Ca(2+) channels and the Ca(2+) signal controlling exocytosis rather than a direct effect on the secretory machinery.  (+info)

Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. (37/1268)

Coated vesicles have been purified from brain, adrenal medulla, and a nonsecreting lymphoma cell line. A single major protein species, clathrin, with an apparent molecular weight of 180,000, forms the coat of all these vesicles. Peptide mapping suggests that the amino acid sequence of clathrin is conserved, irrespective of tissue or species studied. Coated vesicles of different sizes are found. The coats are constructed with variable numbers of clathrin subunits, arranged in closed networks of hexagons and pentagons. The amount of clathrin in lymphoma cells suggests that coated vesicles transfer substantial amounts of membrane within cells, not necessarily in association with a secretory process.  (+info)

Evidence for paracrine signaling between macrophages and bovine adrenal chromaffin cell Ca(2+) channels. (38/1268)

The adrenal gland contains resident macrophages, some of which lie adjacent to the catecholamine producing chromaffin cells. Because macrophages release a variety of secretory products, it is possible that paracrine signaling between these two cell types exists. Of particular interest is the potential paracrine modulation of voltage-gated calcium channels (I(Ca)), which are the main calcium influx pathway triggering catecholamine release from chromaffin cells. We report that prostaglandin E(2) (PGE(2)), one of the main signals produced by macrophages, inhibited I(Ca) in cultured bovine adrenal chromaffin cells. The inhibition is rapid, robust, and voltage dependent; the activation kinetics are slowed and inhibition is largely reversed by a large depolarizing prepulse, suggesting that the inhibition is mediated by a direct G-protein betagamma subunit interaction with the calcium channels. About half of the response to PGE(2) was sensitive to pertussis toxin (PTX) incubation, suggesting both PTX-sensitive and -insensitive G proteins were involved. We show that activation of macrophages by endotoxin rapidly (within minutes) releases a signal that inhibits I(Ca) in chromaffin cells. The inhibition is voltage dependent and partially PTX sensitive. PGE(2) is not responsible for this inhibition as blocking cyclooxygenase with ibuprofen did not prevent the production of the inhibitory signal by the macrophages. Nor did blocking the lipoxygenase pathway with nordihydroguaiaretic acid alter production of the inhibitory signal. Our results suggest that macrophages may modulate I(Ca) and catecholamine secretion by releasing PGE(2) and other chemical signal(s).  (+info)

Endothelin enhances and inhibits adrenal catecholamine release in deoxycorticosterone acetate-salt hypertensive rats. (39/1268)

Endothelin (ET) and the sympathoadrenal system contribute to the development and maintenance of deoxycorticosterone acetate (DOCA)-salt hypertension. ET can act directly on the adrenal medulla to enhance the release of catecholamines. In addition, the level of ET peptide is increased in the adrenal glands of DOCA-salt hypertensive rats. Therefore, we tested the hypothesis that ET enhances adrenal medullary catecholamine release during DOCA-salt hypertension. The infusion of exogenous ET-1 into an isolated, perfused adrenal gland preparation resulted in an increase in the basal release of norepinephrine (NE) and epinephrine (EPI) in control and DOCA-salt hypertensive rats. Nerve-stimulated (0.3 Hz) release of NE was significantly inhibited during ET-1 infusion in the DOCA-salt hypertensive rats but not in the control rats. The role of endogenous ET on basal and nerve-stimulated NE and EPI release was also examined. An infusion of either BQ-123 (10(-7) mol/L), an ET(A) receptor antagonist, or BQ-788 (10(-7) mol/L), an ET(B) receptor antagonist, did not alter basal NE or EPI release in either control or DOCA-salt hypertensive rats. BQ-788 did not alter nerve-stimulated release of NE and EPI. In contrast, the nerve-stimulated release of EPI, but not NE, was enhanced during BQ-123 infusion in DOCA-salt hypertensive rats. Nerve-stimulated NE and EPI release was unaffected by BQ-123 in the control rats. These data suggest that ET can stimulate adrenal medullary catecholamine release in normotensive and DOCA-salt hypertensive rats. However, ET also inhibits adrenal medullary catecholamine release in DOCA-salt hypertensive rats.  (+info)

Retardation of cation channel deactivation by mitochondrial dysfunction in adrenal medullary cells. (40/1268)

The mechanism for cyanide (CN) activation of a nonselective cation (NS) channel coupled with a muscarinic receptor in a guinea pig chromaffin cell was studied with the perforated-patch method. Bath application of a protein kinase inhibitor resulted in a dose-dependent inhibition of muscarine-induced current (I(M)) but had no apparent effect on the CN-induced current (I(CN)). On the other hand, production of I(CN) occluded muscarine activation of NS channels in an amplitude-dependent manner. Deactivation of I(M) after washout was retarded while I(CN) was also active, and the extent of the retardation increased with an increase in the relative production of I(CN) on muscarinic stimulation. Restoration of Na(+) pump activity from CN suppression was conspicuously retarded below 19-20 degrees C, and the apparent diminution of I(M) and I(CN) after washout was retarded in parallel with a decrease in temperature. The results suggest that CN activation of NS channels is due to suppression of deactivation of the channel.  (+info)