Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes. (33/429)

The small GTP-binding protein ADP-ribosylation factor 1 (ARF1) is an essential component of the molecular machinery that catalyzes the formation of membrane-bound transport intermediates. By using an in vitro assay that reproduces recruitment of cytosolic proteins onto purified, high salt-washed Golgi membranes, we have analyzed the role of cAMP-dependent protein kinase A (PKA) on ARF1 incorporation. Addition to this assay of either pure catalytic subunits of PKA (C-PKA) or cAMP increased ARF1 binding. By contrast, ARF1 association was inhibited following C-PKA inactivation with either PKA inhibitory peptide or RIIalpha as well as after cytosol depletion of C-PKA. C-PKA also stimulated recruitment and activation of a recombinant form of human ARF1 in the absence of additional cytosolic components. The binding step could be dissociated from the activation reaction and found to be independent of guanine nucleotides and saturable. This step was stimulated by C-PKA in an ATP-dependent manner. Dephosphorylated Golgi membranes exhibited a decreased ability to recruit ARF1, and this effect was reverted by addition of C-PKA. Following an increase in the intracellular level of cAMP, ARF proteins redistributed from cytosol to the perinuclear Golgi region of intact cells. Collectively, the results show that PKA exerts a key regulatory role in the recruitment of ARF1 onto Golgi membranes. In contrast, PKA modulators did not affect recruitment of beta-COP onto Golgi membranes containing prebound ARF1.  (+info)

Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. (34/429)

The yeast Saccharomyces cerevisiae possesses two genes that encode phosphatidylinositol (PtdIns) 4-kinases, STT4 and PIK1. Both gene products phosphorylate PtdIns at the D-4 position of the inositol ring to generate PtdIns(4)P, which plays an essential role in yeast viability because deletion of either STT4 or PIK1 is lethal. Furthermore, although both enzymes have the same biochemical activity, increased expression of either kinase cannot compensate for the loss of the other, suggesting that these kinases regulate distinct intracellular functions, each of which is required for yeast cell growth. By the construction of temperature-conditional single and double mutants, we have found that Stt4p activity is required for the maintenance of vacuole morphology, cell wall integrity, and actin cytoskeleton organization. In contrast, Pik1p is essential for normal secretion, Golgi and vacuole membrane dynamics, and endocytosis. Strikingly, pik1(ts) cells exhibit a rapid defect in secretion of Golgi-modified secretory pathway cargos, Hsp150p and invertase, whereas stt4(ts) cells exhibit no detectable secretory defects. Both single mutants reduce PtdIns(4)P by approximately 50%; however, stt4(ts)/pik1(ts) double mutant cells produce more than 10-fold less PtdIns(4)P as well as PtdIns(4,5)P(2). The aberrant Golgi morphology found in pik1(ts) mutants is strikingly similar to that found in cells lacking the function of Arf1p, a small GTPase that is known to regulate multiple membrane trafficking events throughout the cell. Consistent with this observation, arf1 mutants exhibit reduced PtdIns(4)P levels. In contrast, diminished levels of PtdIns(4)P observed in stt4(ts) cells at restrictive temperature result in a dramatic change in vacuole size compared with pik1(ts) cells and persistent actin delocalization. Based on these results, we propose that Stt4p and Pik1p act as the major, if not the only, PtdIns 4-kinases in yeast and produce distinct pools of PtdIns(4)P and PtdIns(4,5)P(2) that act on different intracellular membranes to recruit or activate as yet uncharacterized effector proteins.  (+info)

A regulatory role for ADP-ribosylation factor 6 (ARF6) in activation of the phagocyte NADPH oxidase. (35/429)

In activated neutrophils NADPH oxidase is regulated through various signaling intermediates, including heterotrimeric G proteins, kinases, GTPases, and phospholipases. ADP-ribosylation factor (ARF) describes a family of GTPases associated with phospholipase D (PLD) activation. PLD is implicated in NADPH oxidase activation, although it is unclear whether activation of PLD by ARF is linked to receptor-mediated oxidase activation. We explored whether ARF participates in NADPH oxidase activation by formyl-methionine-leucine-phenylalanine (fMLP) and whether this involves PLD. Using multicolor forward angle light scattering analyses to measure superoxide production in differentiated neutrophil-like PLB-985 cells, we tested enhanced green fluorescent fusion proteins of wild-type ARF1 or ARF6, or their mutant counterparts. The ARF6(Q67L) mutant defective in GTP hydrolysis caused increased superoxide production, whereas the ARF6(T27N) mutant defective in GTP binding caused diminished responses to fMLP. The ARF1 mutants had no effect on fMLP responses, and none of the ARF proteins affected phorbol 12-myristate 13-acetate-elicited oxidase activity. PLD inhibitors 1-butanol and 2, 3-diphosphoglycerate, or the ARF6(N48R) mutant assumed to be defective in PLD activation, blocked fMLP-elicited oxidase activity in transfected cells. The data suggest that ARF6 but not ARF1 modulates receptor-mediated NADPH oxidase activation in a PLD-dependent mechanism. Because PMA-elicited NADPH oxidase activation also appears to be PLD-dependent, but ARF-independent, ARF6 and protein kinase C may act through distinct pathways, both involving PLD.  (+info)

Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. (36/429)

Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using (3)H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1-GDP, but binds to the transitory Sec7d-ARF1-GDP complex and stabilizes it. Two pairs of residues at positions 190-191 and 198-208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1-GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1-GDP and a surface encompassing residues 190-208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1-GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.  (+info)

The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. (37/429)

The heterotetrameric adaptor protein complex AP-3 has been shown to function in the sorting of proteins to the endosomal/lysosomal system. However, the mechanism of AP-3 recruitment onto membranes is poorly understood, and it is still uncertain whether AP-3 nucleates clathrin-coated vesicles. Using purified components, we show that AP-3 and clathrin are recruited onto protein-free liposomes and Golgi-enriched membranes by a process that requires ADP-ribosylation factor (ARF) and GTP but no other proteins or nucleotides. The efficiency of recruitment onto the two sources of membranes is comparable and independent of the composition of the liposomes. Clathrin binding occurred in a cooperative manner as a function of the membrane concentration of AP-3. Thin-section electron microscopy of liposomes and Golgi-enriched membranes that had been incubated with AP-3, clathrin, and ARF.GTP showed the presence of clathrin-coated buds and vesicles. These results establish that AP-3-containing clathrin-coated vesicles form in vitro and are consistent with AP-3-dependent protein transport being mediated by clathrin-coated vesicles.  (+info)

Dual requirement for rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. (38/429)

G protein-coupled and tyrosine kinase receptor activation of phospholipase D1 (PLD1) play key roles in agonist-stimulated cellular responses such as regulated exocytosis, actin stress fiber formation, and alterations in cell morphology and motility. Protein Kinase C, ADP-ribosylation factor (ARF), and Rho family members activate PLD1 in vitro; however, the actions of the stimulators on PLD1 in vivo have been proposed to take place through indirect pathways. We have used the yeast split-hybrid system to generate PLD1 alleles that fail to bind to or to be activated by RhoA but that retain wild-type responses to ARF and PKC. These alleles then were employed in combination with alleles unresponsive to PKC or to both stimulators to examine the activation of PLD1 by G protein-coupled receptors. Our results demonstrate that direct stimulation of PLD1 in vivo by RhoA (and by PKC) is critical for significant PLD1 activation but that PLD1 subcellular localization and regulated phosphorylation occur independently of these stimulatory pathways.  (+info)

Residues forming a hydrophobic pocket in ARF3 are determinants of GDP dissociation and effector interactions. (39/429)

Three residues of human ADP-ribosylation factor 3 (ARF3) (F51, W66 and Y81) cluster into a hydrophobic pocket in the inactive, GDP-bound protein. Disruption of the hydrophobic pocket with mutations at these residues increased the rate of GDP dissociation and association, but not always that of GTPgammaS. Several of the same mutants were found to be defective, often selectively, in binding different ARF effectors in two-hybrid assays. These results highlight three features of these hydrophobic residues in regulating (1) the rate of GDP dissociation, (2) the conformational changes that promote GTP binding and (3) their role in binding target proteins.  (+info)

Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. (40/429)

ADP-ribosylation factors, a family of small GTPases, are believed to be key regulators of intracellular membrane traffic. However, many biochemical in vitro experiments have led to different models for their involvement in various steps of vesicular transport, and their precise role in living cells is still unclear. We have taken advantage of the powerful yeast genetic system and screened for temperature-sensitive (ts) mutants of the ARF1 gene from Saccharomyces cerevisiae. By random mutagenesis of the whole open reading frame of ARF1 by error-prone PCR, we isolated eight mutants and examined their phenotypes. arf1 ts mutants showed a variety of transport defects and morphological alterations in an allele-specific manner. Furthermore, intragenic complementation was observed between certain pairs of mutant alleles, both for cell growth and intracellular transport. These results demonstrate that the single Arf1 protein is indeed involved in many different steps of intracellular transport in vivo and that its multiple roles may be dissected by the mutant alleles we constructed.  (+info)