Identification of a new Pyk2 target protein with Arf-GAP activity. (1/429)

Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a stable complex with Pyk2 and that activation of Pyk2 leads to tyrosine phosphorylation of Pap in living cells. Immunofluorescence experiments demonstrate that Pap is localized in the Golgi apparatus and at the plasma membrane, where it is colocalized with Pyk2. In addition, in vitro recombinant Pap exhibits strong GTPase-activating protein (GAP) activity towards the small GTPases Arf1 and Arf5 and weak activity towards Arf6. Addition of recombinant Pap protein to Golgi preparations prevented Arf-dependent generation of post-Golgi vesicles in vitro. Moreover, overexpression of Pap in cultured cells reduced the constitutive secretion of a marker protein. We propose that Pap functions as a GAP for Arf and that Pyk2 may be involved in regulation of vesicular transport through its interaction with Pap.  (+info)

GCS1, an Arf guanosine triphosphatase-activating protein in Saccharomyces cerevisiae, is required for normal actin cytoskeletal organization in vivo and stimulates actin polymerization in vitro. (2/429)

Recent cloning of a rat brain phosphatidylinositol 3,4, 5-trisphosphate binding protein, centaurin alpha, identified a novel gene family based on homology to an amino-terminal zinc-binding domain. In Saccharomyces cerevisiae, the protein with the highest homology to centaurin alpha is Gcs1p, the product of the GCS1 gene. GCS1 was originally identified as a gene conditionally required for the reentry of cells into the cell cycle after stationary phase growth. Gcs1p was previously characterized as a guanosine triphosphatase-activating protein for the small guanosine triphosphatase Arf1, and gcs1 mutants displayed vesicle-trafficking defects. Here, we have shown that similar to centaurin alpha, recombinant Gcs1p bound phosphoinositide-based affinity resins with high affinity and specificity. A novel GCS1 disruption strain (gcs1Delta) exhibited morphological defects, as well as mislocalization of cortical actin patches. gcs1Delta was hypersensitive to the actin monomer-sequestering drug, latrunculin-B. Synthetic lethality was observed between null alleles of GCS1 and SLA2, the gene encoding a protein involved in stabilization of the actin cytoskeleton. In addition, synthetic growth defects were observed between null alleles of GCS1 and SAC6, the gene encoding the yeast fimbrin homologue. Recombinant Gcs1p bound to actin filaments, stimulated actin polymerization, and inhibited actin depolymerization in vitro. These data provide in vivo and in vitro evidence that Gcs1p interacts directly with the actin cytoskeleton in S. cerevisiae.  (+info)

EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. (3/429)

We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.  (+info)

Characterization of the regulation of phospholipase D activity in the detergent-insoluble fraction of HL60 cells by protein kinase C and small G-proteins. (4/429)

Phospholipase D (PLD) activity has been shown to be GTP-dependent both in vivo and in vitro. One protein that confers GTP sensitivity to PLD activity in vitro is the low-molecular-mass G-protein ADP-ribosylation factor (Arf). However, members of the Rho family and protein kinase C (PKC) have also been reported to activate PLD in various cell systems. We have characterized the stimulation of PLD in HL60 cell membranes by these proteins. The results demonstrate that a considerable proportion of HL60 PLD activity is located in a detergent-insoluble fraction of the cell membrane that is unlikely to be a caveolae-like domain, but is probably cytoskeletal. This PLD activity required the presence of Arf1, a Rho-family member and PKC for efficient catalysis of the lipid substrate, suggesting that the activity represents PLD1. We show that recombinant human PLD1b is regulated in a similar manner to HL60-membrane PLD, and that PKCalpha and PKCdelta are equally effective PLD activators. Therefore maximum PLD activity requires Arf, a Rho-family member and PKC, emphasizing the high degree of regulation of this enzyme.  (+info)

Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. (5/429)

The crystal structure of the complex of ARF1 GTPase bound to GDP and the catalytic domain of ARF GTPase-activating protein (ARFGAP) has been determined at 1.95 A resolution. The ARFGAP molecule binds to switch 2 and helix alpha3 to orient ARF1 residues for catalysis, but it supplies neither arginine nor other amino acid side chains to the GTPase active site. In the complex, the effector-binding region appears to be unobstructed, suggesting that ARFGAP could stimulate GTP hydrolysis while ARF1 maintains an interaction with its effector, the coatomer complex of COPI-coated vesicles. Biochemical experiments show that coatomer directly participates in the GTPase reaction, accelerating GTP hydrolysis a further 1000-fold in an ARFGAP-dependent manner. Thus, a tripartite complex controls the GTP hydrolysis reaction triggering disassembly of COPI vesicle coats.  (+info)

Expression and distribution of adenosine diphosphate-ribosylation factors in the rat kidney. (6/429)

BACKGROUND: Adenosine diphosphate (ADP)-ribosylation factors (ARFs) are small guanosine triphosphatases involved in membrane traffic regulation. Aiming to explore the possible involvement of ARF1 and ARF6 in the reabsorptive properties of the nephron, we evaluated their distribution along the different renal epithelial segments. METHODS: ARFs were detected by immunofluorescence and immunogold cytochemistry on renal sections, using specific anti-ARF antibodies. RESULTS: ARF1 was detected in proximal and distal tubules, thick ascending limbs of Henle's loops, and cortical and medullary collecting ducts. By immunofluorescence, labeling was mostly localized to the cell cytoplasm, particularly in Golgi areas. By electron microscopy, the Golgi apparatus and the endosomal compartment of proximal and distal tubular cells were labeled. ARF6 immunofluorescence was observed in brush border membranes and the cytoplasm of proximal convoluted tubular cells, whereas it was restricted to the apical border of proximal straight tubules. ARF6 immunogold labeling was detected over microvilli and endocytic compartments of proximal tubular cells. CONCLUSIONS: This study demonstrates the following: (a) the heterogeneous distributions of ARF1 and ARF6 along the nephron, (b) the existence of cytosolic and membrane-bound forms for both ARFs, and (c) their association with microvilli and endocytic compartments, suggesting an active participation in renal reabsorption.  (+info)

Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. (7/429)

Activation of ADP-ribosylation factors (ARFs), approximately 20-kDa guanine nucleotide-binding proteins that play an important role in intracellular vesicular trafficking, depends on guanine nucleotide-exchange proteins (GEPs), which accelerate replacement of bound GDP with GTP. Two major families of ARF GEPs are known: approximately 200-kDa molecules that are inhibited by brefeldin A (BFA), a fungal metabolite that blocks protein secretion and causes apparent disintegration of Golgi structure, and approximately 50-kDa GEPs that are insensitive to BFA. We describe here two human brain cDNAs that encode BFA-inhibited GEPs. One is a approximately 209-kDa protein 99.5% identical in deduced amino acid sequence (1, 849 residues) to a BFA-inhibited ARF GEP (p200) from bovine brain. The other smaller protein, which is approximately 74% identical (1, 785 amino acids), represents a previously unknown gene. We propose that the former, p200, be named BIG1 for (brefeldin A-inhibited GEP1) and the second, which encodes a approximately 202-kDa protein, BIG2. A protein containing sequences found in BIG2 had been purified earlier from bovine brain. Human tissues contained a 7.5-kilobase BIG1 mRNA and a 9.4-kilobase BIG2 transcript. The BIG1 and BIG2 genes were localized, respectively, to chromosomes 8 and 20. BIG2, synthesized as a His6 fusion protein in Sf9 cells, accelerated guanosine 5'-3-O-(thio)triphosphate binding by recombinant ARF1, ARF5, and ARF6. It activated native ARF (mixture of ARF1 and ARF3) more effectively than it did any of the nonmyristoylated recombinant ARFs. BIG2 activity was inhibited by BFA in a concentration-dependent manner but not by B17, a structural analog without effects on Golgi function. Although several clones for approximately 50-kDa BFA-insensitive ARF GEPs are known, these new clones for the approximately 200-kDa BIG1 and BIG2 should facilitate characterization of this rather different family of proteins as well as the elucidation of mechanisms of regulation of BFA-sensitive ARF function in Golgi transport.  (+info)

Structural elements of ADP-ribosylation factor 1 required for functional interaction with cytohesin-1. (8/429)

ADP-ribosylation factor 1 (ARF1) is a 20-kDa guanine nucleotide-binding protein involved in vesicular trafficking. Conversion of inactive ARF-GDP to active ARF-GTP is catalyzed by guanine nucleotide exchange proteins such as cytohesin-1. Cytohesin-1 and its Sec7 domain (C-1Sec7) exhibit guanine nucleotide exchange protein activity with ARF1 but not ARF-like protein 1 (ARL1), which is 57% identical in amino acid sequence. With chimeric proteins composed of ARF1 (F) and ARL1 (L) sequences we identified three structural elements responsible for this specificity. Cytohesin-1 increased [35S]guanosine 5'-(gamma-thio)triphosphate binding to L28/F (first 28 residues of L, remainder F) and to a much lesser extent F139/L, and mut13F139/L (F139/L with random sequence in the first 13 positions) but not Delta13ARF1 that lacks the first 13 amino acids; therefore, a nonspecific ARF N terminus was required for cytohesin-1 action. The N terminus was not, however, required for that of C-1Sec7. Both C-1Sec7 and cytohesin-1 effectively released guanosine 5'-(gamma-thio)triphosphate from ARF1, but only C-1Sec7 displaced the nonhydrolyzable GTP analog bound to mut13F139/L, again indicating that structure in addition to the Sec7 domain is involved in cytohesin-1 interaction. Some element(s) of the C-terminal region is also involved, because replacement of the last 42 amino acids with ARL sequence in F139L decreased markedly the interaction with cytohesin-1. Participation of both termini is consistent with the crystallographic structure of ARF in which the two terminal alpha-helices are in close proximity. ARF1 residues 28-50 are also important in the interaction with cytohesin-1; replacement of Lys-38 with Gln, the corresponding residue in ARL1, abolished the ability to serve as substrate for cytohesin-1 or C-1Sec7. These studies have defined multiple structural elements in ARF1, including switch 1 and the N and C termini, that participate in functional interactions with cytohesin-1 (or its catalytic domain C-1Sec7), which were not apparent from crystallographic analysis.  (+info)