Distribution of Fos immunoreactivity in rat brain after sodium consumption induced by peritoneal dialysis. (65/15664)

Fos immunoreactivity was used to map the neuronal population groups activated after sodium ingestion induced by peritoneal dialysis (PD) in rats. Oxytocin immunoreactivity in combination with Fos immunoreactivity was also analyzed to evaluate whether the oxytocinergic neurons of the paraventricular nucleus of the hypothalamus (PVN) are activated during the satiety process of sodium appetite. Sodium ingestion stimulated by PD produced Fos immunoreactivity within defined cells groups of the lamina terminalis and hindbrain areas such us the nucleus of the solitary tract, area postrema, and lateral parabrachial nucleus. On the other hand, particular parvocellular and magnocellular oxytocinergic subdivisions of the PVN and supraoptic nucleus were double labeled after PD-induced sodium consumption. Approximately 27 and 2.1%, respectively, of the activated dorsomedial cap and parvocellular posterior subnuclei of the PVN, which project to the hindbrain, were oxytocinergic. Our data indicate that specific neuronal groups are activated during the satiety process of sodium appetite, suggesting they may form a circuit subserving sodium balance regulation. They also support a functional role for the oxytocinergic neurons in this circuit.  (+info)

Tranexamic acid increases peritoneal ultrafiltration volume in patients on CAPD. (66/15664)

OBJECTIVE: The preservation of ultrafiltration (UF) capacity is crucial to maintaining long-term continuous ambulatory peritoneal dialysis (CAPD).The aim of the present study was to investigate whether the antiplasmin agent tranexamic acid (TNA) increases UF volume in CAPD patients. PATIENTS AND METHODS: Fifteen patients on CAPD, 5 with UF loss and 10 without UF loss, were recruited for the study. The effect of TNA was evaluated with respect to changes in UF volume, peritoneal permeability, peritoneal clearance, bradykinin (BK), and tissue plasminogen activator (tPA) concentration. SETTING: Dialysis unit of the Saiseikai Central Hospital. RESULTS: In patients with UF loss, 2 weeks of treatment with oral TNA produced a significant increase in UF volume in all subjects (5/5).TNA also produced a significant increase in peritoneal clearances of urea and creatinine (Cr). However, the peritoneal equilibration test (PET) revealed that TNA had no effect on dialysate/plasma (D/P) Cr, Kt/V, or the protein catabolic rate (PCR).TNA also had no effect on net glucose reabsorption. In contrast, significant decreases in BK and blood tPA concentrations in response to TNA treatment were noted. BK concentration in drainage fluid was also reduced. In the case of patients without UF loss,TNA produced an increase in UF volume in 70% (7/10). However, no differences were found in blood and drainage BK and tPA concentrations between theTNA treatment and nontreatment periods in these patients. A comparison of basal BK and tPA concentration showed that there were no differences in these parameters between patients with UF loss and those without loss of UF. Furthermore,TNA given intraperitoneally to a patient also produced a marked increase in UF volume. CONCLUSION: The present study suggests thatTNA enhances UF volume in patients both with and without UF loss. SinceTNA did not affect peritoneal permeability and glucose reabsorption, the mechanism by which TNA exerts an enhancing action on UF is largely unknown. We speculate that it may be associated with suppression of the BK and/or tPA system, at least in patients with UF loss.  (+info)

Pharmacokinetic modeling of M6G formation after oral administration of morphine in healthy volunteers. (67/15664)

BACKGROUND: Morphine is metabolized to two major metabolites, morphine-3-glucuronide and morphine-6-glucuronide (M6G). Under the conditions of long-term oral morphine administration, the accumulation of M6G may contribute to the analgesic effects, but it may also cause respiratory depression. METHODS: Five healthy male volunteers (ages 25-34 yr) received 90 mg MST (morphine sulfate 5H2O sustained-released tablet, equivalent to 67.8 mg oral morphine). Multiple plasma and urine samples were taken for as long as 14 and 36 h, respectively. Individual pharmacokinetics after intravenous administration of morphine and M6G were available from a previous investigation. A new model that considers the M6G-plasma profile as a sum of the input from the first-pass metabolism of morphine and the input from systemically available morphine was applied to the plasma concentration versus time curves of M6G. The concentrations of M6G at the effect site after long-term morphine administration were simulated. RESULTS: The fraction of morphine absorbed from the gut was 82+/-14%. Of this, 42+/-8% passed through the liver, resulting in an oral bioavailability of morphine of 34+/-9%. Of the total amount of M6G, 71+/-7% was formed during the first-pass metabolism, and 29+/-7% was formed by metabolism of systemic morphine. After 36 h, the amounts of M6G and morphine excreted in the urine were 92+/-17% and 9+/-3%, respectively. Simulation of effect-site concentrations of M6G indicated that after multiple oral dosing of morphine in patients with normal liver and renal function, M6G might reach concentrations two times greater than that of morphine. CONCLUSIONS: M6G may contribute to the analgesic and side effects seen with long-term morphine treatment. The current model of morphine and M6G pharmacokinetics after oral administration of morphine may serve as a pharmacokinetic basis for experiments evaluating the analgesic contribution of M6G with long-term oral dosing of morphine.  (+info)

Suppression of airway inflammation by theophylline in adult bronchial asthma. (68/15664)

BACKGROUND: Chronic continuous airway inflammation caused by eosinophils has been noted to play critical roles in the pathophysiology of bronchial asthma, in addition to reversible obstruction and hypersensitivity of the respiratory tract. Therefore, suppression of chronic airway inflammation has become more important in asthma treatment. Although theophylline has been a conventionally used bronchodilator, it has been recently reported to have concurrent anti-inflammatory effects. OBJECTIVE: Accordingly, we studied the effects of a slow-release theophylline preparation, Theolong, on airway inflammation. METHODS: Administration of Theolong 400 mg/day to 24 patients with mild or moderate asthma and measuring eosinophil cationic protein (ECP), a marker of airway inflammation, and eosinophils in sputum and peripheral blood at 4 and 8 weeks. RESULTS: As a result, sputum ECP, serum ECP and sputum eosinophil count (%) were significantly lowered after 4 and 8 weeks. CONCLUSION: Thus, in the theophylline-administered group, slow-release theophylline, Theolong, was effective in treating asthma, with anti-inflammatory effects on inflammatory cells besides its bronchodilator action.  (+info)

Inhibition of the angiotensin II Type 1 receptor by TCV-116: quantitation by in vitro autoradiography. (69/15664)

Inhibition of angiotensin (Ang) II type 1 (AT1) receptors in various target tissues of adult Sprague-Dawley rats was studied after single oral administration of TCV-116. The effects of TCV-116 on Ang II-receptor binding were assessed by quantitative in vitro autoradiography using 125I-[Sar1,Ile8]Ang II as a ligand. Four hours after the administration of TCV-116 (1 mg/kg), Ang II-receptor binding was markedly inhibited in the kidney (20% of control), adrenal cortex (27%), thoracic aorta (57%), heart (55%) and testis (76%) where AT1 receptors predominate. In the brain, orally administered TCV-116 produced a significant inhibition of binding both to the circumventricular organs (38%), which are devoid of the blood-brain barrier (BBB), and to the discrete regions within the BBB such as the paraventricular hypothalamic nucleus (48%), nucleus of the solitary tract (60%). Twenty-four hours after the administration, Ang II-receptor binding had partly recovered to approximately 50-85% of control levels. In contrast, throughout the experimental period, Ang II-receptor binding was little affected in sites where Ang II type 2 (AT2) receptors predominate such as the adrenal medulla and the nucleus of the inferior olive. These data indicate that orally administered TCV-116 specifically binds to AT1 receptors both in peripheral tissues and the central nervous system.  (+info)

Endothelial activation response to oral micronised flavonoid therapy in patients with chronic venous disease--a prospective study. (70/15664)

BACKGROUND: Endothelial activation is important in the pathogenesis of skin changes due to chronic venous disease (CVD). Purified micronised flavonoid fraction has been used for symptomatic treatment of CVD for a considerable period of time. The exact mode of action of these compounds remains unknown. AIM: To study the effects of micronised purified flavonoidic fraction (Daflon 500 mg, Servier, France) treatment on plasma markers of endothelial activation. MATERIALS AND METHODS: Twenty patients with chronic venous disease were treated for 60 days with DAFLON 500 mg twice daily. Duplex ultrasonography and PPG was used to assess the venous disease. Blood was collected from a foot vein immediately before starting treatment and within 1 week of stopping treatment. Plasma markers of endothelial activation were measured using commercial ELISA kits. RESULTS: Reduction in the level of ICAM-1, 32% (141 ng/ml: 73 ng/ml) and VCAM 29% (1292 ng/ml: 717 ng/ml) was seen. Reduction in plasma lactoferrin (36% decrease, 760 ng/ml: 560 ng/ml) and VW factor occurred in the C4 group only. CONCLUSIONS: Micronised purified flavonoidic fraction treatment for 60 days seems to decrease the levels of some plasma markers of endothelial activation. This could ameliorate the dermatological effects of (CVD). This could also explain some of the pharmacological actions of these compounds. Our study demonstrates the feasibility of using soluble endothelial adhesion molecules as markers for treatment.  (+info)

Coronary arteriopathy in monkeys following administration of CI-1020, an endothelin A receptor antagonist. (71/15664)

A selective non-peptide endothelin A (ETA) receptor antagonist, CI-1020, was administered to cynomolgus monkeys intravenously (i.v.) for 2 or 4 wk and orally for 4 wk. Groups consisting of 3 animals of each sex received CI-1020 at 1, 5, and 10 mg/kg/hr (i.v.) or orally at 250, 500, and 750 mg/kg body weight for 4 wk. Control animals received the vehicle only. In a separate experiment, 1 male was infused with 10 mg/kg/hr for 2 wk, and Monastral blue dye was administered i.v. to facilitate localization of lesions to the vascular walls. One female was administered saline and the dye and served as a control. One female at 1 mg/kg/hr was found dead at week 2, and 1 female at 5 mg/kg/hr was euthanatized during week 4 as a result of severe thigh swelling at the catheter site. Macroscopically, extramural coronary arteries appeared thickened and nodular in the 4-wk i.v. study in the female found dead at 1 mg/kg/hr, in 1 male and 1 female at 5 mg/kg/hr, and in 2 females at 10 mg/kg/hr. Histologically, Monastral blue pigment trapped in the walls of coronary arteries with arteriopathy was observed in the male treated with CI-1020 at 10 mg/kg/hr for 2 wk. Extramural coronary arteriopathy occurred at all doses in the 4-wk i.v. study, with higher incidence occurring in females than in males (7 of 9 treated females compared with 3 of 9 treated males). In the oral study, 1 female at 500 mg/kg/day and 1 male and 2 females at 750 mg/kg/day had coronary arteriopathy. Histological changes after 2 wk of treatment were characterized by intimal thickening, fragmentation of the internal elastic lamina, necrosis and edema of the media, and mixed inflammatory-cell infiltrates in the intima, media, and adventitia. After 4 wk of i.v. administration, arteriopathy was characterized by segmental disruption of the elastic lamina and intimal and medial fibrosis with complete replacement of smooth muscle with fibrous tissue. The adventitia was thickened as a result of fibrosis and mixed or mononuclear inflammatory-cell infiltrates. CI-1020 concentrations were higher in males (1.57 to 29 micrograms/ml) than in females (0.974 to 24.4 micrograms/ml) in the i.v. study. Transient systemic exposure with high maximum plasma concentration (Cmax) (120-352 micrograms/ml) in the oral study was insufficient to provoke arterial changes of the same magnitude as those noted with continuous i.v. administration. The regeneration of the media by fibrous tissue and the disruption of the elastic lamina may weaken the arterial wall and increase the susceptibility of the artery to the development of aneurysm.  (+info)

Reovirus type 3 clone 9 increases interleukin-1alpha level in the brain of neonatal, but not adult, mice. (72/15664)

Reovirus Type 3 clone 9 (T3C9)-induced lethal encephalitis is age dependent. We examined the effects of T3C9 inoculated into neonatal and adult mice by intracerebral, intramuscular, or peroral routes and the effect of lipopolysaccharide (LPS) on IL-1alpha levels in the blood and the brain. In parallel, we measured mice survival to T3C9 challenge, primary replication, and growth in and spread to the brain. The results show that T3C9 infection increased IL-1alpha only in the brain of neonatal mice, whereas LPS enhanced IL-1alpha in the brain and in the blood in both neonatal and adult mice. In neonatal mice, a T3C9-induced IL-1alpha increase coincided with viral replication-induced nervous tissue injury and preceded death. Anti-IL-1alpha antibody partially protected neonatal mice against T3C9 peroral challenge, further suggesting that this cytokine is involved in the mechanisms leading to lethal encephalitis. In adult mice, T3C9 was not lethal and did not modify IL-1alpha levels although it slowly replicated in nervous tissues when inoculated directly into the brain. Together, these results suggest that differences in nervous tissue response to T3C9 replication between newborn and adult mice could account in part for the age-dependent susceptibility to T3C9-induced lethal encephalitis.  (+info)