Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. (25/5446)

In a recent study we have demonstrated that 3T3-L1 adipocytes exposed to low micromolar H2O2 concentrations display impaired insulin stimulated GLUT4 translocation from internal membrane pools to the plasma membrane (Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kannety, H., and Bashan, N. (1998) Diabetes 47, 1562-1569). In this study we further characterize the cellular mechanisms responsible for this observation. Two-hour exposure to approximately 25 microM H2O2 (generated by adding glucose oxidase to the medium) resulted in disruption of the normal insulin stimulated insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI) 3-kinase cellular redistribution between the cytosol and an internal membrane pool (low density microsomal fraction (LDM)). This was associated with reduced insulin-stimulated IRS-1 and p85-associated PI 3-kinase activities in the LDM (84 and 96% inhibition, respectively). The effect of this finding on the downstream insulin signal was demonstrated by a 90% reduction in insulin stimulated protein kinase B (PKB) serine 473 phosphorylation and impaired activation of PKBalpha and PKBgamma. Both control and oxidized cells exposed to heat shock displayed a wortmannin insensitive PKB serine phosphorylation and activity. These data suggest that activation of PKB and GLUT4 translocation are insulin signaling events dependent upon a normal insulin induced cellular compartmentalization of PI 3-kinase and IRS-1, which is oxidative stress-sensitive. These findings represent a novel cellular mechanism for the induction of insulin resistance in response to changes in the extracellular environment.  (+info)

Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. (26/5446)

Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.  (+info)

Modulation of rat preadipocyte adipose conversion by androgenic status: involvement of C/EBPs transcription factors. (27/5446)

Androgenic status affects rat preadipocyte adipose conversion from two deep intra-abdominal (epididymal and perirenal) fat depots differently. The aim of this study was to establish whether these site-specific alterations of adipogenesis are related to altered expressions of the transcriptional factors regulating proliferation and differentiation of preadipocytes, c-myc and CCAAT/enhancer binding proteins (C/EBPs: C/EBPalpha and beta). The increased proliferation of epididymal and perirenal preadipocytes from castrated rats was not linked to variations in c-myc mRNA and protein levels. The expression of the early marker of adipogenesis, lipoprotein lipase (LPL), was decreased by androgenic deprivation in epididymal cells but remained insensitive to the androgenic status in perirenal preadipocytes. In contrast, LPL expression increased in subcutaneous preadipocytes from castrated rats, an effect which was partly corrected by testosterone treatment. Expression of C/EBPbeta was unaffected by androgenic status whatever the anatomical origin of the preadipocytes. In contrast, the mRNA and protein levels of C/EBPalpha were greatly decreased by androgenic deprivation in epididymal cells, an alteration which could not be corrected by in vivo testosterone administration. Altogether these results demonstrated that in preadipocytes androgenic deprivation affects site-specifically the expression of LPL, an early marker of adipogenesis and of C/EBPalpha, a master regulator of adipogenesis. These observations contribute to an explanation of why castration induces defective adipose conversion in rat epididymal preadipocytes specifically.  (+info)

Identification of the APS protein as a novel insulin receptor substrate. (28/5446)

In order to identify novel substrates involved in insulin receptor signaling, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the cytoplasmic domain of the human insulin receptor as bait. Here we describe the isolation and characterization of an interacting protein, APS, which contains pleckstrin homology and Src homology 2 domains and several potential tyrosine phosphorylation sites. APS mRNA and protein are expressed primarily in skeletal muscle, heart, and adipose tissue, and in differentiated 3T3-L1 adipocytes. We show that APS associates with phosphotyrosines situated within the activation loop of the insulin receptor via the APS Src homology 2 domain. Insulin stimulation of 3T3-L1 adipocytes resulted in rapid tyrosine phosphorylation of endogenous APS on tyrosine 618, whereas platelet-derived growth factor treatment resulted in no APS phosphorylation. In summary, we have identified a new insulin receptor substrate that is primarily expressed in insulin-responsive tissues and in 3T3-L1 adipocytes whose phosphorylation shows insulin receptor specificity. These findings suggest a potential role for APS in insulin-regulated metabolic signaling pathways.  (+info)

Mechanism of adipose tissue iNOS induction in endotoxemia. (29/5446)

The aim of the present study was to investigate the mechanism of adipose tissue inducible nitric oxide synthase (iNOS) induction in endotoxemia. Systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) to rats for +info)

The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. (30/5446)

Promiscuous coupling between G protein-coupled receptors and multiple species of heterotrimeric G proteins provides a potential mechanism for expanding the diversity of G protein-coupled receptor signaling. We have examined the mechanism and functional consequences of dual Gs/Gi protein coupling of the beta3-adrenergic receptor (beta3AR) in 3T3-F442A adipocytes. The beta3AR selective agonist disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL316,243) stimulated a dose-dependent increase in cAMP production in adipocyte plasma membrane preparations, and pretreatment of cells with pertussis toxin resulted in a further 2-fold increase in cAMP production by CL316,243. CL316,243 (5 microM) stimulated the incorporation of 8-azido-[32P]GTP into Galphas (1.57 +/- 0.12; n = 3) and Galphai (1. 68 +/- 0.13; n = 4) in adipocyte plasma membranes, directly demonstrating that beta3AR stimulation results in Gi-GTP exchange. The beta3AR-stimulated increase in 8-azido-[32P]GTP labeling of Galphai was equivalent to that obtained with the A1-adenosine receptor agonist N6-cyclopentyladenosine (1.56 +/- 0.07; n = 4), whereas inclusion of unlabeled GTP (100 microM) eliminated all binding. Stimulation of the beta3AR in 3T3-F442A adipocytes led to a 2-3-fold activation of mitogen-activated protein (MAP) kinase, as measured by extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation. Pretreatment of cells with pertussis toxin (PTX) eliminated MAP kinase activation by beta3AR, demonstrating that this response required receptor coupling to Gi. Expression of the human beta3AR in HEK-293 cells reconstituted the PTX-sensitive stimulation of MAP kinase, demonstrating that this phenomenon is not exclusive to adipocytes or to the rodent beta3AR. ERK1/2 activation by the beta3AR was insensitive to the cAMP-dependent protein kinase inhibitor H-89 but was abolished by genistein and AG1478. These data indicate that constitutive beta3AR coupling to Gi proteins serves both to restrain Gs-mediated activation of adenylyl cyclase and to initiate additional signal transduction pathways, including the ERK1/2 MAP kinase cascade.  (+info)

Mutation of tyrosine 960 within the insulin receptor juxtamembrane domain impairs glucose transport but does not inhibit ligand-mediated phosphorylation of insulin receptor substrate-2 in 3T3-L1 adipocytes. (31/5446)

CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  (+info)

Effect of tumor necrosis factor-alpha on insulin signal transduction in rat adipocytes: relation to PKCbeta and zeta translocation. (32/5446)

Although much evidence has been accumulated suggesting that tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance, the precise mechanism involved is still unclear. Recently, it has been reported that insulin-induced glucose uptake is mediated by activation of second messengers such as insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and diacylglycerol (DG)-protein kinase C (PKC). We have examined the effect of TNF-alpha on insulin-induced glucose uptake and activations of tyrosine kinase, IRS-1, PI3K and PKC in rat adipocytes. Pretreatment with 0.1-100 nM TNF-alpha for 60 min resulted in a significant decrease in 10 nM insulin- or 1 microM 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced [3H]2-deoxyglucose uptake without affecting basal glucose uptake. 10 nM insulin-stimulated activation of tyrosine kinase, IRS-1 and PI3K was suppressed by preincubation with 0.1-10 nM TNF-alpha for 60 min. 10 nM TNF-alpha pretreatment also suppressed 10 nM insulin- and 1 microM TPA-induced increases in membrane-associated PKCbeta and PKCzeta. Furthermore, 10 nM TNF-alpha, by itself, altered PKCbeta translocation from the membrane to cytosol. These results suggest that TNF-alpha inhibits insulin-stimulated activation of both the tyrosine kinase-IRS-1-PI3K-PKCzeta pathway and DG-PKC pathway. Finally, TNF-alpha contributes to insulin resistance in rat adipocytes.  (+info)