Role of adipocyte-derived apoE in modulating adipocyte size, lipid metabolism, and gene expression in vivo. (33/132)

 (+info)

Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. (34/132)

We have reported that orally administrated acetate contributed to suppression of lipogenesis in the liver and to reduction of lipid accumulation in the adipose tissue of Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The aim of this study was to investigate the effect of acetate on skeletal muscle and adipose tissues. Treatment with acetate showed a higher rate of oxygen consumption and a smaller size of lipid droplets in white adipose and brown adipose tissues. An analysis by Northern blotting revealed that the transcripts of myoglobin and Glut4 genes in the abdominal muscle of the OLETF rats were increased by acetate treatment, while the transcripts of lipolytic genes increased in the white adipose and brown adipose tissues. It is possible that acetate has effects on lipid metabolism in the skeletal muscles and the adipose tissues, and has functions that work against obesity and obesity-linked type 2 diabetes.  (+info)

Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. (35/132)

 (+info)

Transdifferentiation properties of adipocytes in the adipose organ. (36/132)

 (+info)

Signaling pathways mediating beta3-adrenergic receptor-induced production of interleukin-6 in adipocytes. (37/132)

 (+info)

C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. (38/132)

 (+info)

Comparison of gene transcription between subcutaneous and visceral adipose tissue in Chinese adults. (39/132)

Obese individuals with fat stored in visceral adipose tissue (VAT) generally suffer greater adverse metabolic consequences than those with fat stored predominantly in subcutaneous adipose tissue (SAT), but its molecular basis is not completely understood. We isolated paired samples of SAT and VAT from 15 lean and 15 obese subjects and systematically compared the transcription level of genes that may determine fat distribution and metabolic sequelae between SAT and VAT using quantitative real-time PCR. We found that, leptin levels were lower in VAT than SAT, for both lean and obese subjects. In lean subjects, tumor necrosis factor-alpha (TNF-alpha) was expressed equally in both fat depots, while toll-like receptor 4 (TLR4) and glucocorticoid receptor (GR) showed significantly lower expression in VAT than SAT. In obese subjects, TNF-alpha and TLR4 expression were significantly higher in VAT than SAT, yet GR expression did not differ in these areas. For all subjects, VAT 11beta-hydroxysteroid dehydrogenate type 1 (11beta-HSD1) level was significantly correlated with BMI. GR expression level was significantly correlated with TLR4 expression level. Cultured adipocytes showed higher TLR4 mRNA level after differentiation, and higher TNF-alpha level after treatment with free fatty acids. These results suggest that there are depot-specific differences in leptin, TNF-alpha, TLR4 and GR transcriptions in humans. TLR4 signaling and higher 11beta-HSD1 and GR levels in VAT may contribute predominantly to inflammatory factor production and subsequent metabolic sequelae in obese human.  (+info)

Diet-induced up-regulation of gene expression in adipocytes without changes in DNA methylation. (40/132)

The expansion of white adipose tissue (WAT) mass during the development of obesity is mediated in part through an increase in adipocyte size. Although gene expression profiles associated with adipogenesis in vitro and the development of obesity in vivo have been characterized by DNA microarray analysis, the role of chromatin and chromatin-modifying proteins in the regulation of gene expression related to adipocyte hypertrophy has remained unclear. We have now shown that maintenance of C57BL/6J mice on a high-fat diet for 16 weeks resulted in marked up-regulation of the expression of leptin, Mest (mesoderm specific transcript; also known as paternally expressed gene 1, or Peg1), and sFRP5 (secreted frizzled-related protein 5) genes in WAT. Furthermore, the demethylating agent 5-aza-2'-deoxycytidine increased the amount of Mest/Peg1 mRNA, but not that of leptin or sFRP5 mRNAs, in mouse 3T3-L1 adipocytes. However, analysis by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that maintenance of mice on a high-fat diet for various times did not affect the level of methylation at specific CpG sites in the promoter regions of leptin, Mest/Peg1, and sFRP5 genes in WAT. Our results indicate that the diet-induced up-regulation of leptin, Mest/Peg1, and sFRP5 gene expression in WAT during the development of obesity in mice is not mediated directly by changes in DNA methylation.  (+info)