Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. (17/525)

Escherichia coli FimH adhesin mediates binding to the bladder mucosa. In mice, a FimH vaccine protects against bacterial challenge. In this study, 4 monkeys were inoculated with 100 microgram of FimCH adhesin-chaperone complex mixed with MF59 adjuvant, and 4 monkeys were given adjuvant only intramuscularly. After 2 doses (day 0 and week 4), a booster at 48 weeks elicited a strong IgG antibody response to FimH in the vaccinated monkeys. All 8 monkeys were challenged with 1 mL of 108 E. coli cystitis isolate NU14. Three of the 4 vaccinated monkeys were protected from bacteruria and pyuria; all control monkeys were infected. These findings suggest that a vaccine based on the FimH adhesin of E. coli type 1 pili may have utility in preventing cystitis in humans.  (+info)

Role of decay-accelerating factor domains and anchorage in internalization of Dr-fimbriated Escherichia coli. (18/525)

Dr-fimbriated Escherichia coli capable of invading epithelial cells recognizes human decay-accelerating factor (DAF) as its cellular receptor. The role of extracellular domains and the glycosylphosphatidylinositol anchor of DAF in the process of internalization of Dr(+) E. coli was characterized in a cell-cell interaction model. Binding of Dr(+) E. coli to the short consensus repeat 3 domain of DAF expressed by Chinese hamster ovary cells was critical for internalization to occur. Deletion of short consensus repeat 3 domain or replacement of Ser(165) by Leu in this domain, or the use of a monoclonal antibody to this region abolished internalization. Replacing the glycosylphosphatidylinositol anchor of DAF with the transmembrane anchor of membrane cofactor protein or HLA-B44 resulted in abolition or reduction of internalization respectively. Cells expressing glycosylphosphatidylinositol-anchored DAF but not the transmembrane-anchored DAF internalized Dr(+) E. coli through a glycolipid pathway, since the former cells were more sensitive to inhibition by methyl-beta-cyclodextrin, a sterol-chelating agent. Electron microscopic studies revealed that the intracellular vacuoles containing the internalized Dr(+) E. coli were morphologically distinct between the anchor variants of DAF. The cells expressing glycosylphosphatidylinositol-anchored DAF contained a single bacterium in tight-fitting vacuoles, while the cells expressing transmembrane-anchored DAF contained multiple (two or three) bacteria in spacious phagosomes. This finding suggests that distinct postendocytic events operate in the cells expressing anchor variants of DAF. We provide direct evidence for the DAF-mediated internalization of Dr(+) E. coli and demonstrate the significance of the glycosylphosphatidylinositol anchor, which determines the ability and efficiency of the internalization event.  (+info)

Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. (19/525)

Pathogenic Escherichia coli often carry determinants for several different adhesins. We show a direct communication between two adhesin gene clusters in uropathogenic E.coli: type 1 fimbriae (fim) and pyelonephritis-associated pili (pap). A regulator of pap, PapB, is a key factor in this cross-talk. FimB recombinase turns on type 1 fimbrial expression, and PapB inhibited phase transition by FimB in both off-to-on and on-to-off directions. On-to-off switching requiring FimE was increased by PapB. By analysis of FimB- and FimE-LacZ translational fusions it was concluded that the increase in on-to-off transition rates was via an increase in FimE expression. Inhibition of FimB-promoted switching was via a different mechanism: PapB inhibited FimB-promoted in vitro recombination, indicating that FimB activity was blocked at the fim switch. In vitro analyses showed that PapB bound to several DNA regions of the type 1 fimbrial operon, including the fim switch region. These data show that Pap expression turns off type 1 fimbriae expression in the same cell. Such cross-talk between adhesin gene clusters may bring about appropriate expression at the single cell level.  (+info)

Epidemiological study of pap genes among diarrheagenic or septicemic Escherichia coli strains producing CS31A and F17 adhesins and characterization of Pap(31A) fimbriae. (20/525)

The association of the pap operon with the CS31A and F17 adhesins was studied with 255 Escherichia coli strains isolated from calves, lambs, or humans with diarrhea. The three classes of PapG adhesin with different receptor binding preferences were also screened. The pap operon was associated with 50 and 36% of human strains that produced CS31A and ovine strains that produced F17, respectively. Among the bovine isolates, the pap operon was detected in 61% of the CS31A-positive isolates and 72% of the strains that produce both CS31A and F17. The class II adhesin gene was present in bovine (20%) and ovine (71%) isolates. Both class II and III adhesins were genetically associated with 36% of the human strains. The highest prevalence of the pap operon was observed among E. coli strains that produce additional adhesins involved in the binding of bacteria to intestinal cells. Among the bovine isolates, the reference strain for CS31A and F17c was found to be positive for the pap operon. Phenotypic and genotypic characterizations were undertaken. Pap(31A) appeared as fine and flexible fimbriae surrounding the bacteria but did not mediate adhesion to calf intestinal villi. Pap(31A) production was optimal with bacteria cultured on minimal growth media and repressed by addition of exogenous leucine. The deduced amino acid sequence of the PapA(31A) structural subunit showed 57 to 97% identity with the different P-related structural subunits produced by E. coli strains isolated from pigs with septicemia or humans with urinary tract infections. None of the three papG allelic variants was detected, but a homologous papG gene was present in the chromosome of strain 31A.  (+info)

Bacteria-host cell interaction mediated by cellular cholesterol/glycolipid-enriched microdomains. (21/525)

Gram negative bacterial infection is a leading cause of fatality and is attributed, at least in part, to the bacteria's capacity to persist in the host in spite of appropriate antibiotic therapy. It has been suggested that bacteria evade antibiotics by hiding within host cells. We sought to investigate this important aspect of infections in mast cells, which are inflammatory cells found in close proximity to the host-environment interface and which have recently been reported to play a crucial role in the early innate immune response to bacteria. We examined mast cell interactions with FimH-expressing E. coli, one of the major opportunistic pathogens of humans. We determined that in serum free conditions, these bacteria were able to trigger mast cell uptake without loss of bacterial viability. CD48, a mannose containing GPI (glycosylphosphatidylinositol)-linked molecule was found to be the receptor of FimH-expressing E. coli in mouse mast cells. We found that the internalization via CD48 was blocked by filipin, a cholesterol binding drug known to disrupt cholesterol/glycolipid-enriched microdomains and the bacteria-encasing vacuoles were rich in cholesterol inside cells. Interestingly, we found that mast cells subsequently expelled majority of the intracellular bacteria in 24 hours. This expulsion process was blocked by lovastatin/cyclodextrin treatment, which is known to inhibit cellular trafficking of cholesterol/glycolipid-enriched microdomains. Thus, the bacterial entry into and expulsion from mast cells were critically dependent on cholesterol/glycolipid-enriched microdomains, which represents a novel mode of tussle between the pathogen and the mast cell occurring in opsonin deficient sites in the body or even at other sites in naive or immunocompromised hosts which have low systemic levels of E. coli specific antibody.  (+info)

Functional flexibility of the FimH adhesin: insights from a random mutant library. (22/525)

Type 1 fimbriae are surface organelles of Escherichia coli which mediate D-mannose-sensitive binding to different host surfaces. This binding is conferred by the minor fimbrial component FimH. Naturally occurring variants of the FimH protein have been selected in nature for their ability to recognize specific receptor targets. In particular, variants that bind strongly to terminally exposed monomannose residues have been associated with a pathogenicity-adaptive phenotype that enhances E. coli colonization of extraintestinal locations such as the urinary bladder. In this study we have used random mutagenesis to specifically identify nonselective mutations in the FimH adhesin which modify its binding phenotype. Isogenic E. coli clones expressing FimH variants were tested for their ability to bind yeast cells and model glycoproteins that contain oligosaccharide moieties rich in either terminal monomannose, oligomannose, or nonmannose residues. Both the monomannose- and the oligomannose-binding capacity of type 1 fimbriae could be altered by minor amino acid changes in the FimH protein. The monomannose-binding phenotype was particularly sensitive to changes, with extensive differences in binding being observed in comparison to wild-type FimH levels. Different structural alterations were able to cause similar functional changes in FimH, suggesting a high degree of flexibility to target recognition by this adhesin. Alteration of residue P49 of the mature FimH protein, which occurs within the recently elucidated carbohydrate-binding pocket of FimH, completely abolished its function. Amino acid changes that increased the binding capacity of FimH were located outside receptor-interacting residues, indicating that functional changes relevant to pathogenicity are likely to be due to conformational changes of the adhesin.  (+info)

Mucosal and systemic immune responses to chimeric fimbriae expressed by Salmonella enterica serovar typhimurium vaccine strains. (23/525)

Recombinant live oral vaccines expressing pathogen-derived antigens offer a unique set of attractive properties. Among these are the simplicity of administration, the capacity to induce mucosal and systemic immunity, and the advantage of permitting genetic manipulation for optimal antigen presentation. In this study, the benefit of having a heterologous antigen expressed on the surface of a live vector rather than intracellularly was evaluated. Accordingly, the immune response of mice immunized with a Salmonella enterica serovar Typhimurium vaccine strain expressing the Escherichia coli 987P fimbrial antigen on its surface (Fas(+)) was compared with the expression in the periplasmic compartment (Fas(-)). Orally immunized BALB/c mice showed that 987P fimbriated Salmonella serovar Typhimurium CS3263 (aroA asd) with pCS151 (fas(+) asd(+)) elicited a significantly higher level of 987P-specific systemic immunoglobulin G (IgG) and mucosal IgA than serovar Typhimurium CS3263 with pCS152 (fasD mutant, asd(+)) expressing 987P periplasmic antigen. Further studies were aimed at determining whether the 987P fimbriae expressed by serovar Typhimurium chi4550 (cya crp asd) could be used as carriers of foreign epitopes. For this, the vaccine strain was genetically engineered to express chimeric fimbriae carrying the transmissible gastroenteritis virus (TGEV) C (379-388) and A (521-531) epitopes of the spike protein inserted into the 987P major fimbrial subunit FasA. BALB/c mice administered orally serovar Typhimurium chi4550 expressing the chimeric fimbriae from the tet promoter in pCS154 (fas(+) asd(+)) produced systemic antibodies against both fimbria and the TGEV C epitope but not against the TGEV A epitope. To improve the immunogenicity of the chimeric fimbriae, the in vivo inducible nirB promoter was inserted into pCS154, upstream of the fas genes, to create pCS155. In comparison with the previously used vaccine, BALB/c mice immunized orally with serovar Typhimurium chi4550/pCS155 demonstrated significantly higher levels of serum IgG and mucosal IgA against 987P fimbria. Moreover, mucosal IgA against the TGEV C epitope was only detected with serovar Typhimurium chi4550/pCS155. The induced antibodies also recognized the epitopes in the context of the full-length TGEV spike protein. Hence, immune responses to heterologous chimeric fimbriae on Salmonella vaccine vectors can be optimized by using promoters known to be activated in vivo.  (+info)

Evidence of commonality between canine and human extraintestinal pathogenic Escherichia coli strains that express papG allele III. (24/525)

Although dogs have been proposed as carriers of extraintestinal pathogenic Escherichia coli (ExPEC) with infectious potential for humans, presumed host species-specific differences between canine and human ExPEC strains have cast doubt on this hypothesis. The recent discovery that allele III of papG (the P fimbrial adhesin gene) predominates among human cystitis isolates and confers an adherence phenotype resembling that of canine ExPEC prompted the present reevaluation of the canine-human ExPEC connection. Sixteen paired pap-positive urine and rectal E. coli isolates from dogs with urinary tract infection were studied. papG (adhesin) and papA (pilin) allele type, agglutination phenotypes, virulence factor genotypes, and randomly amplified polymorphic DNA and pulsed-field gel electrophoresis fingerprints were analyzed and compared with those of human ExPEC controls. The 16 canine strains contained predominantly papG allele III. Agglutination phenotypes segregated strictly according to papG allele status and were homogeneous among strains with the same papG allele profile irrespective of their human versus canine origin. Canine and human PapG variant III peptide sequences were highly homologous, without host species-specific differences. The most prevalent canine papA allele was F48, a novel variant recently identified among human urosepsis isolates. In addition to pap, human ExPEC-associated virulence genes detected among the canine strains included sfa/focDE, sfaS, fyuA, hlyA, cnf1, cdtB, kpsMT-II and -III, rfc, traT, ompT, and a marker for a pathogenicity-associated island from archetypal human ExPEC strain CFT073. Molecular fingerprinting confirmed the fecal origin of all but one canine urine isolate and showed one pair of O6 canine urine and fecal isolates to be extremely similar to an O6 human urosepsis isolate with which they shared all other genotypic and phenotypic characteristics analyzed. These data demonstrate that canine ExPEC strains are similar to, and in some instances essentially indistinguishable from, human ExPEC strains, which implicates dogs and their feces as potential reservoirs of E. coli with infectious potential for humans.  (+info)