Molecular motors: Kinesin's string variable. (49/521)

A recent model suggests that the walking action of kinesin is due to a 13 residue 'fundamental engine' called the neck linker domain, which cyclically zips and unzips to the main part of the heads. New experiments confirm one prediction of the model: that crosslinking the neck linker to the head should block motility.  (+info)

Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. (50/521)

After phosphorylation by protein kinase A, gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by the interaction of ATP with its nucleotide binding domains (NBDs). Models of this gating regulation have proposed that ATP hydrolysis at NBD1 and NBD2 may drive channel opening and closing, respectively (reviewed in Nagel, G. (1999) Biochim. Biophys. Acta 1461, 263-274). However, as yet there has been little biochemical confirmation of the predictions of these models. We have employed photoaffinity labeling with 8-azido-ATP, which supports channel gating as effectively as ATP to evaluate interactions with each NBD in intact membrane-bound CFTR. Mutagenesis of Walker A lysine residues crucial for azido-ATP hydrolysis to generate the azido-ADP that is trapped by vanadate indicated a greater role of NBD1 than NBD2. Separation of the domains by limited trypsin digestion and enrichment by immunoprecipitation confirmed greater and more stable nucleotide trapping at NBD1. This asymmetry of the two domains in interactions with nucleotides was reflected most emphatically in the response to the nonhydrolyzable ATP analogue, 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP), which in the gating models was proposed to bind with high affinity to NBD2 causing inhibition of ATP hydrolysis there postulated to drive channel closing. Instead we found a strong competitive inhibition of nucleotide hydrolysis and trapping at NBD1 and a simultaneous enhancement at NBD2. This argues strongly that AMP-PNP does not inhibit ATP hydrolysis at NBD2 and thereby questions the relevance of hydrolysis at that domain to channel closing.  (+info)

The structure and nucleotide occupancy of bovine mitochondrial F(1)-ATPase are not influenced by crystallisation at high concentrations of nucleotide. (51/521)

Analysis of tryptophan mutants of F(1)-ATPase from Escherichia coli [Lobau et al. (1997) FEBS Lett. 404, 15-18] suggested that nucleotide concentrations used to grow crystals for the determination of the structure of bovine F(1)-ATPase [Abrahams et al. (1994) Nature 370, 621-628] would be sufficient to occupy only two catalytic sites, and that higher concentrations of nucleotide would result in all three sites being occupied. We have determined the structure of bovine F(1)-ATPase at 2.9 A resolution with crystals grown in the presence of 5 mM AMPPNP and 5 microM ADP. Similar to previous structures of bovine F(1)-ATPase determined with crystals grown in the presence of lower nucleotide concentrations, only two beta-subunits have bound nucleotide and the third subunit remains empty.  (+info)

Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. (52/521)

Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by GroEL, which undergoes a large structural change by the ATP binding or hydrolysis. One of the main concerns of GroEL is the mechanism of the productive and cooperative structural change of GroEL induced by the nucleotide. We studied the cooperative nature of GroEL by nucleotide titration using isothermal titration calorimetry and fluorescence spectroscopy. Our results indicated that the binding of ADP and ATP analogs to a single ring mutant (SR1), as well as that to GroEL, was non-cooperative. Only ATP induces an apparently cooperative conformational change in both proteins. Furthermore, the fluorescence changes of pyrene-labeled GroEL indicated that GroEL has two kinds of nucleotide binding sites. The fluorescence titration result fits well with a model in which two kinds of binding sites are both non-cooperative and independent of each other. These results suggest that the binding and hydrolysis of ATP may be necessary for the cooperative transition of GroEL.  (+info)

ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. (53/521)

Vacuolar H+-ATPase (V-ATPase) consists of a catalytic head, a stalk part and a membrane domain. We indirectly investigated the interaction between the A subunit (catalytic head) and the E subunit (stalk part) using an ATP analogue, adenosine 5'-[beta,gamma-imino]triphosphate (AMP-PNP), which holds the enzyme in the substrate-binding state. AMP-PNP treatment caused a mobility shift of the E subunit with a faster migration in SDS/polyacrylamide gel electrophoresis without a reductant, while ATP treatment did not. A mobility shift of the E subunit has been detected in several plants. As polypeptides with intramolecular disulfide bonds migrate faster than those without disulfide bonds, the mobility shift may be due to the formation of an intramolecular disulfide bond by two cysteine residues conserved among several plant species. The mobility shift may be involved in the binding of AMP-PNP to the ATP-binding site, which exists in the A and B subunits, as it was inhibited by the addition of ATP. Pretreatment with 2'-3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), which modifies the ATP-binding site of the B subunit under UV illumination, did not inhibit the mobility shift of the E subunit caused by AMP-PNP treatment. The response of V-ATPase following the AMP-PNP binding may cause a conformational change in the E subunit into a form that is susceptible to oxidation of cysteine residues. This is the first demonstration of interaction between the A and E subunits in the substrate-binding state of a plant V-ATPase.  (+info)

Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). (54/521)

Although molecular biology provides new insights into the subunit compositions and the stoichiometries of insect neuronal nicotinic acetylcholine receptors (nAChRs), our knowledge about the phosphorylation/dephosphorylation mechanisms of native neuronal nAChRs is limited. The regulation of alpha-bungarotoxin-resistant nAChRs was studied on dissociated adult dorsal unpaired median neurons isolated from the terminal abdominal ganglion of the cockroach Periplaneta americana, using whole-cell, patch-clamp technique. Under 0.5 microM alpha-bungarotoxin treatment, pressure ejection application of nicotine or acetylcholine onto the cell body induced an inward current exhibiting a biphasic current-voltage relationship. We found that two distinct components underlying the biphasic curve differed in their ionic permeability and pharmacology (one being sensitive to d-tubocurarine, and the other affected only by mecamylamine and alpha-conotoxin ImI). This indicated that two types of alpha-bungarotoxin-resistant nAChRs (named nAChR1 and nAChR2) mediated the nicotinic response. These two components were also differentially sensitive to rundown and intracellular messengers. Intracellular application of 0.1 mM cAMP only increased the current amplitude mediated by nAChR1. Using forskolin (1 microM), W7 and H89, we demonstrated that adenylyl cyclase, sensitive to calcium/calmodulin complex, regulated nAChR1 via a cAMP/cAMP-dependent protein kinase cascade. By contrast, internal cAMP concentration higher than 0.1 mM reduced the current amplitude. This effect, mimicked by high external concentration of forskolin (100 microM) and IBMX, was reversed by okadaic acid, suggesting the implication of a protein phosphatase. Using KN-62, we demonstrated that calmodulin-Kinase II also modulated directly and indirectly nAChR1, via an inhibition of the phosphatase activity. Finally, we reported that phosphorylation/dephosphorylation of nAChR1 strongly affected the action of the widely used neonicotinoid insecticide imidacloprid.  (+info)

Reciprocal modulation of voltage-gated and background K(+) channels mediated by nucleotides and corticotropin. (55/521)

Bovine adrenal zona fasciculata (AZF) cells express two types of K(+)-selective ion channels including a rapidly inactivating bKv1.4 current (I(A)) and an ATP-dependent noninactivating background current (I(AC)) that sets the resting membrane potential. Whole-cell, patch-clamp recording from cultured AZF cells was used to demonstrate a novel reciprocal modulation of these two K(+) channels by intracellular nucleotides and corticotropin. Specifically, increases in I(AC) activity induced by intracellular ATP, as well as GTP and 5'-adenylyl-imidodiphosphate (AMP-PNP), were accompanied by a corresponding decrease in the amplitude of the voltage-gated I(A) current. The reduction in I(A) current was observed only when patch pipettes contained ATP or other nucleotides at concentrations sufficient to support activation of I(AC). Conversely, the nearly complete inhibition of I(AC) by corticotropin was accompanied by the coincident reappearance of functional I(A) channels. In the absence of I(AC) current, corticotropin failed to alter I(A). The reciprocal modulation of AZF cell K(+) channels by nucleotides and corticotropin was independent of membrane voltage. These results demonstrate a new form of channel modulation in which the activity of two different K(+) channels is reciprocally modulated in tandem through hormonal and metabolic signaling pathways. They further suggest that I(A) and I(AC) K(+) channels may be functionally coupled in a dynamic equilibrium driven by intracellular ATP and G-protein-coupled receptors. This may represent a unique mechanism for transducing biochemical signals to ionic events involved in cortisol secretion.  (+info)

RecA-mediated strand exchange traverses substitutional heterologies more easily than deletions or insertions. (56/521)

RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.  (+info)