Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. (17/644)

We examined the actions of sphingosine 1-phosphate (S1P) on signaling pathways in Chinese hamster ovary cells transfected with putative S1P receptor subtypes, i.e. Edg-1, AGR16/H218 (Edg-5), and Edg-3. Among these receptor-transfected cells, there was no significant difference in the expressing numbers of the S1P receptors and their affinities to S1P, which were estimated by [(3)H]S1P binding to the cells. In vector-transfected cells, S1P slightly increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in association with inositol phosphate production, reflecting phospholipase C activation; the S1P-induced actions were markedly enhanced in the Edg-3-transfected cells and moderately so in the AGR16-transfected cells. In comparison with vector-transfected cells, the S1P-induced [Ca(2+)](i) increase was also slightly enhanced in the Edg-1-transfected cells. In all cases, the inositol phosphate and Ca(2+) responses to S1P were partially inhibited by pertussis toxin (PTX). S1P also significantly increased cAMP content in a PTX-insensitive manner in all the transfected cells; the rank order of their intrinsic activity of S1P receptor subtypes was AGR16 > Edg-3 > Edg-1. In the presence of forskolin, however, S1P significantly inhibited cAMP accumulation at a lower concentration (1-100 nM) of S1P in a manner sensitive to PTX in the Edg-1-transfected cells but not in either the Edg-3 or AGR16-transfected cells. As for cell migration activity evaluated by cell number across the filter of blind Boyden chamber, Edg-1 and Edg-3 were equally potent, but AGR16 was ineffective. Thus, S1P receptors may couple to both PTX-sensitive and -insensitive G-proteins, resulting in the selective regulation of the phospholipase C-Ca(2+) system, adenylyl cyclase-cAMP system, and cell migration activity, according to the receptor subtype.  (+info)

Characterization of pancreastatin receptors and signaling in adipocyte membranes. (18/644)

Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.  (+info)

A commentary on the pathogenesis of pertussis. (19/644)

In recent years a great deal of information has been generated on the virulence factors produced by Bordetella pertussis, the regulation of their expression, and their molecular mechanisms of action. There are numerous studies of Bordetella virulence factors and strains of B. pertussis in which the genes for some of these components have been mutated or deleted. In addition, several acellular vaccines composed of these virulence factors have been developed, tested, and licensed for use in the prevention of pertussis. Nevertheless, there exists little information specifically on the pathogenesis of the disease process caused by B. pertussis in humans, and such data are necessary for adequate understanding and treatment of this novel infectious disease.  (+info)

Analysis of agonist function at fusion proteins between the IP prostanoid receptor and cognate, unnatural and chimaeric G-proteins. (20/644)

Direct measures of G-protein activation based on guanine nucleotide exchange and hydrolysis are frequently impossible to monitor for receptors which interact predominantly with G(s)alpha. An isolated FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys)-epitope-tagged human IP prostanoid receptor and fusion proteins generated between this form of the receptor and the alpha subunits of its cognate G-protein G(s), G(i1), a G-protein which it fails to activate in co-expression studies, and a chimaeric G(i1)-G(s)6 (a form of G(i1) in which the C-terminal six amino acids were replaced with the equivalent sequence of G(s)) were stably expressed in HEK293 cells. These were detected by [(3)H]ligand-binding studies and by immunoblotting with both an anti-FLAG antibody and with appropriate antisera to the G-proteins. Each construct displayed similar affinity to bind the agonist iloprost. Iloprost stimulated adenylate cyclase activity in clones expressing both IP prostanoid receptor and the IP prostanoid receptor-G(s)alpha fusion protein, and both constructs were shown to interact with and activate endogenously expressed G(s)alpha. Addition of iloprost to membranes of cells expressing the isolated receptor resulted in a small stimulation of high-affinity GTPase activity. Iloprost produced no stimulation of GTPase activity which could be attributed to the IP prostanoid receptor-G(i1)alpha fusion. However, the fusion proteins containing either G(s)alpha or G(i1)-G(s)6alpha produced substantially greater stimulation of GTPase activity than the isolated IP prostanoid receptor. Treatment of cells expressing the IP prostanoid receptor-G(i1)-G(s)6alpha fusion protein with a combination of cholera and pertussis toxins allowed direct measurement of agonist activation of the receptor-linked G-protein. Normalization of such results for levels of expression of the IP prostanoid receptor constructs demonstrated a 5-fold higher stimulation of GTPase activity when using the G(s)alpha-containing fusion protein and a 9-fold improvement when using the fusion protein containing G(i1)-G(s)6alpha to detect G-protein activation compared with expression of the isolated receptor.  (+info)

Agonist-dependent up-regulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C-tail. (21/644)

We have previously reported that the human somatostatin receptor type 1 (hSSTR1) stably expressed in Chinese hamster ovary-K1 cells does not internalize but instead up-regulates at the membrane during continued agonist treatment (1 microM somatostatin (SST)-14 x 22 h). Here we have investigated the molecular basis of hSSTR1 up-regulation. hSSTR1 was up-regulated by SST in a time-, temperature-, and dose-dependent manner to saturable levels, in intact cells but not in membrane preparations. Although hSSTR1 was acutely desensitized to adenylyl cyclase coupling after 1 h SST-14 treatment, continued agonist exposure (22 h) restored functional effector coupling. Up-regulation was unaffected by cycloheximide but blocked by okadaic acid. Confocal fluorescence immunocytochemistry of intact and permeabilized cells showed progressive, time-dependent increase in surface hSSTR1 labeling, associated with depletion of intracellular SSTR1 immunofluorescent vesicles. To investigate the structural domains of hSSTR1 responsible for up-regulation, we constructed C-tail deletion (Delta) mutants and chimeric hSSTR1-hSSTR5 receptors. Human SSTR5 was chosen because it internalizes readily, displays potent C-tail internalization signals, and does not up-regulate. Like wild type hSSTR1, Delta C-tail hSSTR1 did not internalize and additionally lost the ability to up-regulate. Swapping the C-tail of hSSTR1 with that of hSSTR5 induced internalization (27%) but not up-regulation. Substitution of hSSTR5 C-tail with that of hSSTR1 converted the chimeric receptor to one resembling wild type hSSTR1 (poor internalization, 71% up-regulation). These results show that ligand-induced up-regulation of hSSTR1 occurs by a temperature-dependent active process of receptor recruitment from a pre-existing cytoplasmic pool to the plasma membrane. It does not require new protein synthesis or signal transduction, is sensitive to dephosphorylation events, and critically dependent on molecular signals in the receptor C-tail.  (+info)

Characterization of binding of adenylate cyclase toxin to target cells by flow cytometry. (22/644)

Adenylate cyclase (AC) toxin from Bordetella pertussis intoxicates eukaryotic cells by increasing intracellular cyclic AMP (cAMP) levels. In addition, insertion of AC toxin into the plasma membrane causes efflux of intracellular K(+) and, in a related process, hemolysis of sheep erythrocytes. Although intoxication, K(+) efflux, and hemolysis have been thoroughly investigated, there is little information on the nature of the interaction of this toxin with intact target cells. Using flow cytometry, we observe that binding of AC toxin to sheep erythrocytes and Jurkat T lymphocytes is dependent on posttranslational acylation of the toxin. Extracellular calcium is also necessary, with a steep calcium concentration dependence similar to that required for intoxication and hemolysis. Binding of AC toxin is concentration dependent but unsaturable up to 50 micrograms/ml, suggesting that if there is a specific receptor molecule with which the toxin interacts, it is not limiting. Visualization of cells by fluorescence microscopy supports the data obtained by flow cytometry and reveals a peripheral pattern of toxin distribution. AC toxin binds to erythrocytes at both 0 and 37 degrees C; however, the total binding at 0 degrees C is less than that at 37 degrees C. In human erythrocytes, AC toxin does not cause an increase in K(+) efflux or hemolysis. While AC toxin exhibits reduced potency to increase cAMP in these cells than in sheep erythrocytes, there is only a modest reduction in the binding of the toxin as measured by flow cytometry. Further use of this technique will provide new approaches for dynamic and functional analysis of the early steps involved in intoxication, K(+) efflux, and hemolysis produced by AC toxin.  (+info)

Spontaneous beta(2)-adrenergic signaling fails to modulate L-type Ca(2+) current in mouse ventricular myocytes. (23/644)

A receptor can be activated either by specific ligand-directed changes in conformation or by intrinsic, spontaneous conformational change. In the beta(2)-adrenergic receptor (AR) overexpression transgenic (TG4) murine heart, spontaneously activated beta(2)AR (beta(2)-R*) in the absence of ligands has been evidenced by elevated basal adenylyl cyclase activity and cardiac function. In the present study, we determined whether the signaling mediated by beta(2)-R* differs from that of a ligand-elicited beta(2)AR activation (beta(2)-LR*). In ventricular myocytes from TG4 mice, the properties of L-type Ca(2+) current (I(Ca)), a major effector of beta(2)-LR* signaling, was unaltered, despite a 2.5-fold increase in the basal cAMP level and a 1.9-fold increase in baseline contraction amplitude as compared with that of wild-type (WT) cells. Although the contractile response to beta(2)-R* in TG4 cells was abolished by a beta(2)AR inverse agonist, ICI118,551 (5 x 10(-7) M), or an inhibitory cAMP analog, Rp-CPT-cAMPS (10(-4) M), no change was detected in the simultaneously recorded I(Ca). These results suggest that the increase in basal cAMP due to beta(2)-R*, while increasing contraction amplitude, does not affect I(Ca) characteristics. In contrast, the beta(2)AR agonist, zinterol elicited a substantial augmentation of I(Ca) in both TG4 and WT cells (pertussis toxin-treated), indicating that L-type Ca(2+) channel in these cells can respond to ligand-directed signaling. Furthermore, forskolin, an adenylyl cyclase activator, elicited similar dose-dependent increase in I(Ca) amplitude in WT and TG4 cells, suggesting that the sensitivity of L-type Ca(2+) channel to cAMP-dependent modulation remains intact in TG4 cells. Thus, we conclude that beta(2)-R* bypasses I(Ca) to modulate contraction, and that beta(2)-LR* and beta(2)-R* exhibit different intracellular signaling and target protein specificity.  (+info)

Expression of Ca(2+)-mobilizing endothelin(A) receptors and their role in the control of Ca(2+) influx and growth hormone secretion in pituitary somatotrophs. (24/644)

The expression and coupling of endothelin (ET) receptors were studied in rat pituitary somatotrophs. These cells exhibited periods of spontaneous action potential firing that generated high-amplitude fluctuations in cytosolic calcium concentration ([Ca(2+)](i)). The message and the specific binding sites for ET(A), but not ET(B), receptors were found in mixed pituitary cells and in highly purified somatotrophs. The activation of these receptors by ET-1 led to an increase in inositol 1,4,5-trisphosphate production and the associated rise in [Ca(2+)](i) and growth hormone (GH) secretion. The Ca(2+)-mobilizing action of ET-1 lasted for 2-3 min and was followed by an inhibition of action potential-driven Ca(2+) influx and GH secretion to below the basal levels. As in somatostatin-treated cells, the ET-1-induced inhibition of spontaneous electrical activity and Ca(2+) influx was accompanied by the inhibition of adenylyl cyclase and by the stimulation of inward rectifier potassium current. In contrast to somatostatin, ET-1 did not inhibit voltage-gated Ca(2+) channels. During prolonged agonist stimulation a gradual recovery of Ca(2+) influx and GH secretion occurred. In somatotrophs treated with pertussis toxin overnight, the ET-1-induced Ca(2+)-mobilizing phase was preserved, but it was followed immediately by facilitated Ca(2+) influx and GH secretion. Both somatostatin- and ET-1-induced inhibitions of adenylyl cyclase activity were abolished in pertussis toxin-treated cells. These results indicate that the transient cross-coupling of Ca(2+)-mobilizing ET(A) receptors to the G(i)/G(o) pathway in somatotrophs provides an effective mechanism to change the rhythm of [Ca(2+)](i) signaling and GH secretion during continuous agonist stimulation.  (+info)