CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. (1/2914)

Primary fibroblasts are not efficiently transduced by subgroup C adenovirus (Ad) vectors because they express low levels of the high-affinity Coxsackie virus and adenovirus receptor (CAR). In the present study, we have used primary human dermal fibroblasts as a model to explore strategies by which Ad vectors can be designed to enter cells deficient in CAR. Using an Ad vector expressing the human CAR cDNA (AdCAR) at high multiplicity of infection, primary fibroblasts were converted from being CAR deficient to CAR sufficient. Efficiency of subsequent gene transfer by standard Ad5-based vectors and Ad5-based vectors with alterations in penton and fiber was evaluated. Marked enhancement of binding and transgene expression by standard Ad5 vectors was achieved in CAR-sufficient fibroblasts. Expression by AdDeltaRGDbetagal, an Ad5-based vector lacking the arginine-glycine-aspartate (RGD) alphaV integrin recognition site from its penton base, was achieved in CAR-sufficient, but not CAR-deficient, cells. Fiber-altered Ad5-based vectors, including (a) AdF(pK7)betagal (bearing seven lysines on the end of fiber) (b) AdF(RGD)betagal (bearing a high-affinity RGD sequence on the end of fiber), and (c) AdF9sK betagal (bearing a short fiber and Ad9 knob), demonstrated enhanced gene transfer in CAR-deficient fibroblasts, with no further enhancement in CAR-sufficient fibroblasts. Together, these observations demonstrate that CAR deficiency on Ad targets can be circumvented either by supplying CAR or by modifying the Ad fiber to bind to other cell-surface receptors.  (+info)

Reduced phosphorylation of p50 is responsible for diminished NF-kappaB binding to the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells. (2/2914)

Reduced cell surface levels of major histocompatibility complex class I antigens enable adenovirus type 12 (Ad12)-transformed cells to escape immunosurveillance by cytotoxic T lymphocytes (CTL), contributing to their tumorigenic potential. In contrast, nontumorigenic Ad5-transformed cells harbor significant cell surface levels of class I antigens and are susceptible to CTL lysis. Ad12 E1A mediates down-regulation of class I transcription by increasing COUP-TF repressor binding and decreasing NF-kappaB activator binding to the class I enhancer. The mechanism underlying the decreased binding of nuclear NF-kappaB in Ad12-transformed cells was investigated. Electrophoretic mobility shift assay analysis of hybrid NF-kappaB dimers reconstituted from denatured and renatured p50 and p65 subunits from Ad12- and Ad5-transformed cell nuclear extracts demonstrated that p50, and not p65, is responsible for the decreased ability of NF-kappaB to bind to DNA in Ad12-transformed cells. Hypophosphorylation of p50 was found to correlate with restricted binding of NF-kappaB to DNA in Ad12-transformed cells. The importance of phosphorylation of p50 for NF-kappaB binding was further demonstrated by showing that an NF-kappaB dimer composed of p65 and alkaline phosphatase-treated p50 from Ad5-transformed cell nuclear extracts could not bind to DNA. These results suggest that phosphorylation of p50 is a key step in the nuclear regulation of NF-kappaB in adenovirus-transformed cells.  (+info)

Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. (3/2914)

Adenovirus (Ad) enters target cells by receptor-mediated endocytosis, escapes to the cytosol, and then delivers its DNA genome into the nucleus. Here we analyzed the trafficking of fluorophore-tagged viruses in HeLa and TC7 cells by time-lapse microscopy. Our results show that native or taxol-stabilized microtubules (MTs) support alternating minus- and plus end-directed movements of cytosolic virus with elementary speeds up to 2.6 micrometer/s. No directed movement was observed in nocodazole-treated cells. Switching between plus- and minus end-directed elementary speeds at frequencies up to 1 Hz was observed in the periphery and near the MT organizing center (MTOC) after recovery from nocodazole treatment. MT-dependent motilities allowed virus accumulation near the MTOC at population speeds of 1-10 micrometer/min, depending on the cell type. Overexpression of p50/dynamitin, which is known to affect dynein-dependent minus end-directed vesicular transport, significantly reduced the extent and the frequency of minus end-directed migration of cytosolic virus, and increased the frequency, but not the extent of plus end-directed motility. The data imply that a single cytosolic Ad particle engages with two types of MT-dependent motor activities, the minus end- directed cytoplasmic dynein and an unknown plus end- directed activity.  (+info)

Differences in the interactions of oncogenic adenovirus 12 early region 1A and nononcogenic adenovirus 2 early region 1A with the cellular coactivators p300 and CBP. (4/2914)

Association with the cellular coactivators p300 and CBP is required for the growth-regulatory function of adenoviral (Ad) early region 1A (E1A) proteins. E1A regions necessary for these interactions overlap with domains involved in the induction of tumours in immunocompetent rodents through highly oncogenic Ad12. Differences in the association of cellular factors with the respective E1A domains of Ad12 and nononcogenic Ad2 might therefore be involved in serotype-specific oncogenicity. We analyzed the interaction of the Ad12 E1A 235R protein with p300 and CBP. Here we demonstrate that in the case of Ad12, but not Ad2/5, amino acids (aa) 1-29 of E1A proteins are sufficient to bind the p300-C/H3 domain in vivo and wild-type p300 in vitro. The conserved arginine-2, which is essential for the interaction between Ad2 E1A and p300, was dispensable for the Ad12 E1A 235R-p300 interaction in vitro. In addition to the p300-C/H3 region, we identified a second domain within p300 (aa 1999-2200) binding to the 235R protein. Contrary to p300, the amino-terminus and CR1 are necessary to associate with CBP. The aa 1-29 of the 235R protein but not CR1 are essential for the repression of colTRE-driven gene expression. This repression function is strictly dependent on p300 but not on CBP.  (+info)

Evidence for an adenovirus type 2-coded early glycoprotein. (5/2914)

We have identified an adenovirus type 2 (Ad2)-induced early glycopolypeptide with an apparent molecular weight of 20,000 to 21,000 (20/21K), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 20/21K polypeptide could be labeled in vivo with [(3)H]glucosamine. [(35)S]methionine- and [(3)H]-glucosamine-labeled 20/21K polypeptides bound to concanavalin A-Sepharose columns and were eluted with 0.2 M methyl-alpha-d-mannoside. The pulse-labeled polypeptide appeared as a sharp band with an apparent molecular weight of 21K, but after a chase it converted to multiple bands with an average molecular weight of 20K. This variability in electrophoretic mobility is consistent with glycosylation or deglycosylation of the 20/21K polypeptide. Analysis of the pulse and pulse-chase-labeled forms by using partial proteolysis indicated that the polypeptides were highly related chemically, but not identical. Most of the 20/21K polypeptide is localized in the cytoplasm fraction of infected cells lysed by Nonidet P-40. The 20/21K polypeptide and a 44K polypeptide, labeled with [(35)S]methionine or [(3)H]glucosamine in Ad2-infected human cells, were precipitated by a rat antiserum against an Ad2-transformed rat cell line (T2C4), but not by antisera against three other Ad2-transformed rat cell lines, or by serum from nonimmune rats. The partial proteolysis patterns of the 20/21K and the 44K polypeptides were indistinguishable, indicating that the two polypeptides are highly related, and suggesting that the 44K polypeptide might be a dimer of the 20/21K polypeptide. The 20/21K polypeptide was also induced in Ad2-early infected monkey and hamster cells. These results imply that the 20/21K polypeptide is synthesized in Ad2-infected human, monkey, and hamster cells, and in one but not all Ad2-transformed rat cells. Thus, the 20/21K polypeptide is probably viral coded rather than cell coded and viral induced.  (+info)

Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein. (6/2914)

An expression cassette designed for high-level production of rabies virus glycoprotein (RG) could not be rescued into a replication-defective, adenovirus-based vector using standard procedures. To overcome this difficulty, a 293-based cell line, designated 293LAP13, was constructed that contained and expressed a derivative of the lac repressor protein. The lac operator sequence, to which the repressor binds, was incorporated into an expression cassette, containing a promoter and intron, designed for high-level production of RG. Insertion of a single operator sequence immediately downstream of the transcription start site and the use of the 293LAP13 cell line allowed recombinant viruses that could not be isolated with 293 cells to be rescued efficiently. The operator-containing virus reached higher titres in 293LAP13 than in parental 293 cells and also produced plaques more efficiently in 293LAP13 cells. Moreover, in non-complementing human and canine cell lines, adenovirus vectors with a promoter-intron expression cassette expressed RG at much higher levels than vectors lacking the intron. These observations, together with the demonstration that expression of RG by operator-containing vectors was repressed markedly in 293LAP13 cells and that this inhibition was relieved at least partly by IPTG, suggest that the 293LAP13 cell line may be useful for the rescue and propagation of many vectors in which high expression of the desired protein prevents vector rescue in 293 cells.  (+info)

The adenoviral E1A oncoproteins interfere with the growth-inhibiting effect of the cdk-inhibitor p21(CIP1/WAF1). (7/2914)

The cdk-inhibitor p21(CIP1/WAF1) inhibits the activities of cyclin-dependent kinases and proliferating cell nuclear antigen, thereby repressing cell-cycle progression and DNA replication. Transforming oncogenes, such as E1A of human adenovirus 5 (Ad5), may interfere with such growth-inhibitory proteins. In this study, we show that in various Ad5E1-transformed cells, p21(CIP1/WAF1) is expressed and that, in general, expression is not downregulated. In addition, colony-formation assays show that in Ad5E1-transformed cells highly overexpressed p21(CIP1/WAF1) can still cause growth inhibition. FACS experiments indicate, however, that a G1 arrest induced by moderate overexpression of p21(CIP1/WAF1) can be overcome by E1A. The E1A proteins may interfere with the function of p21(CIP1/WAF1) by binding. Indeed, p21(CIP1/WAF1) binds with its cyclin/cdk-binding N terminus to the transforming N-terminal and CR1 region of the E1A proteins. Together, these results lend support to the model that E1A can interfere directly with p21(CIP1/WAF1) function and thereby stimulates cell growth.  (+info)

Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. (8/2914)

Some human adenoviruses are tumorigenic in rodents. Subgroup A and B human adenoviruses generally induce sarcomas in both male and female animals, and the gene products encoded within viral early region 1 (E1 region) are both necessary and sufficient for this tumorigenicity. In contrast, subgroup D human adenovirus type 9 (Ad9) induces estrogen-dependent mammary tumors in female rats and requires the E4 region-encoded ORF1 oncoprotein for its tumorigenicity. Considering the established importance of the viral E1 region for tumorigenesis by adenoviruses, we investigated whether this viral transcription unit is also necessary for Ad9 to generate mammary tumors. The nucleotide sequence of the Ad9 E1 region indicated that the gene organization and predicted E1A and E1B polypeptides of Ad9 are closely related to those of other human adenovirus E1 regions. In addition, an Ad9 E1 region plasmid demonstrated focus-forming activity in both low-passage-number and established rat embryo fibroblasts, whereas a large deletion within either the E1A or E1B gene of this plasmid diminished transforming activity. Surprisingly, we found that introducing the same transformation-inactivating E1A and E1B deletions into Ad9 results in mutant viruses that retain the ability to elicit mammary tumors in rats. These results are novel in showing that Ad9 represents a unique oncogenic adenovirus in which the E4 region, rather than the E1 region, encodes the major oncogenic determinant in the rat.  (+info)