Highly efficient focus formation by Rous sarcoma virus on adenovirus type 12 E1A-transformed rat 3Y1 cells. (9/424)

When rat 3Y1 cells were infected with Rous sarcoma virus (RSV) variant SR-RSV-D(H), many 3Y1 cells acquired a stable provirus but only few of them formed transformed foci. In contrast, 12E1AY cells (3Y1 cells expressing the adenovirus type 12 [Ad12] E1A protein) formed transformed foci upon RSV infection with the same high frequency as did chicken embryo fibroblast cells. This enhancement of focus-forming efficiency was specifically observed in 3Y1 cells expressing Ad12 E1A protein but was not observed in 3Y1 cells expressing simian virus 40 T, c-myc, p53, c-fos, or v-fos protein. This enhancement was not evident in 5E1AY cells (3Y1 cells expressing the Ad5 E1A protein). Judging from the experiment using Ad12-Ad5 hybird E1A DNAs, the N-terminal half of the Ad12 E1A protein was responsible for this enhancement. The promoter activity of the RSV long terminal repeat measured by pLTR-CAT did not correlate to the efficiency of focus formation by RSV in these 3Y1 cells. Moreover, RSV containing the neo gene instead of the src gene produced G418-resistant cells equally efficiently among 3Y1, E1AY, and chicken embryo fibroblast cells. These results suggest that the enhancement of focus formation by RSV is not due to the increased expression of the src gene by the E1A protein. src mRNA and src protein were lower in RSV-transformed E1AY (RSVE1AY) cells than in RSV-transformed 3Y1 (RSV3Y1) cells. The phosphotyrosine-containing proteins were also less abundant in RSVE1AY cells than in RSV3Y1 cells, suggesting that E1AY cells require a lower threshold dose of p60v-src for transformation than do 3Y1 cells. E1AY cells were found to be more sensitive to lysis by detergents. The results suggest that the enhancement is due to changes in membrane structures in E1AY cells.  (+info)

Cyclin A is required at two points in the human cell cycle. (10/424)

Cyclins play a fundamental role in regulating cell cycle events in all eukaryotic cells. The human cyclin A gene was identified as the site of integration of hepatitis B virus in a hepatocarcinoma cell line; in addition, cyclin A is associated with the E2F transcription factor in a complex which is dissociated by the E1A oncogene product. Such findings suggest that cyclin A is a target for oncogenic signals. We have now found that DNA synthesis and entry into mitosis are inhibited in human cells microinjected with anti-cyclin A antibodies at distinct times. Cyclin A binds both cdk2 and cdc2, giving two distinct cyclin A kinase activities, one appearing in S phase, the other in G2. These results suggest that cyclin A defines novel control points of the human cell cycle.  (+info)

Defective synthesis of early region 4 mRNAs during abortive adenovirus infections in monkey cells. (11/424)

Human adenovirus 2 grows poorly in monkey cells, partly because of defects in late gene expression. Since deletions in early region 4 (E4) cause similar defects in late gene expression, we examined E4 mRNA expression in abortive infections. Processing of E4 mRNAs was defective during abortive infections, most likely at the level of splicing. At early times in productive infections in HeLa cells, the major E4 species produced is a 2-kb mRNA; at late times, a shift occurs so that smaller spliced E4 mRNAs are also produced. In CV-1 cells, a nonpermissive monkey cell line, this shift did not take place and only the 2-kb species was produced at late times, suggesting a defect in E4 mRNA splicing during abortive infections. The adenovirus DNA-binding protein (DBP) was required for normal processing of E4 mRNAs, since a host range mutant (hr602) containing an altered DBP gene showed a normal late E4 mRNA pattern in CV-1 cells; in addition, DBP was required during infections in HeLa cells for late E4 mRNA expression. DBP was not required for production of the late E4 pattern in transient expression assays in HeLa or 293 cells, suggesting that a second factor in addition to the DBP, present during infection but not transfection, modulates E4 mRNA processing.  (+info)

Inhibition of muscle differentiation by the adenovirus E1a protein: repression of the transcriptional activating function of the HLH protein Myf-5. (12/424)

Myogenic differentiation can be inhibited by the adenovirus E1a protein in the rat L6 muscle cell line. The present investigation provides evidence that E1a interferes with the expression of myogenin and the activity of Myf-5, the two myogenic helix-loop-helix (HLH) proteins that are expressed in L6 muscle cells. In nuclei of E1a-expressing L6 cells, Myf-5 protein accumulates to normal or even elevated levels and shows no alterations of its ability to bind to the DNA-binding site (CANNTG). However, trans-activation of muscle-specific reporter genes by Myf-5 is strongly inhibited. The same inhibition by E1a can be shown for the other myogenic HLH proteins, MyoD, myogenin, and MRF4/Myf-6, that have been expressed in 10T1/2 fibroblasts. In contrast to the normal level of Myf-5 expression, synthesis of myogenin is entirely abolished in the differentiation-defective L6-E1a cells. Here, we demonstrate that the carboxy-terminal trans-activator domain and probably the basic-HLH (bHLH) region of Myf-5 constitute targets for the inhibition by E1a. The effect of E1a depends on its intact transforming regions but not on the transcriptional activator domain. Our data suggest that activation of myogenin gene expression and the establishment of the differentiated phenotype may require functional Myf-5. Expression of the Myf-5 gene, however, is apparently independent of auto- or cross-regulation by the myogenic HLH proteins.  (+info)

Modifications of the E.coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation. (13/424)

Eukaryotic expression vectors designed to produce E. coli Lac repressor protein targeted to the nucleus of mammalian cells were constructed. These constructions carry the lac repressor gene (lacI) fused at different positions to a nuclear localization sequence (NLS) from either the SV40 large T antigen or the adenovirus E1a. When the NLS's were fused to the lacI gene at the 5' end, the protein produced exhibited tighter repression of beta-galactosidase expression than the unmodified LacI protein. Localization sequences at the extreme 3' end of the gene generally diminished induction by IPTG, while introduction of the SV40 NLS nine base pairs upstream of the 3' end eliminated repressor activity. When either NLS was placed at the 3' end behind a random nine base pair linker, the activity of the LacI protein depended on the sequence of the linker, and in 9 of 10 linkers tested, activity of the protein was adversely affected. The one exception was the fusion protein from p3'ss, which had the NLS at the 3' end of lacI behind the nine base pair linker, AGC AGC CTG (ser-ser-leu). This protein exhibited efficient nuclear accumulation, strong repressor activity and greater sensitivity to IPTG induction. The functional linker from the p3'ss fusion protein extends the leucine zipper heptad repeat located at the C-terminus of the protein. These data support the role of the leucine zipper in tetramer formation and predict that extension of this zipper will further stabilize the protein. This modified lacI gene should be valuable for improved adaptation of the prokaryotic regulatory system to eukaryotic cells.  (+info)

The 11,600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. (14/424)

We have reported that an 11,600-MW (11.6K) protein is coded by region E3 of adenovirus. We have now prepared two new antipeptide antisera that have allowed us to characterize this protein further. The 11.6K protein migrates as multiple diffuse bands having apparent Mws of about 14,000, 21,000, and 31,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblotting as well as virus mutants with deletions in the 11.6K gene were used to show that the various gel bands represent forms of 11.6K. The 11.6K protein was synthesized in very low amounts during early stages of infection, from the scarce E3 mRNAs d and e which initiate from the E3 promoter. However, 11.6K was synthesized very abundantly at late stages of infection, approximately 400 times the rate at early stages, from new mRNAs termed d' and e'. Reverse transcriptase-polymerase chain reaction and RNA blot experiments indicated that mRNAs d' and e' had the same body (the coding portion) and the same middle exon (the y leader) as early E3 mRNAs d and e, but mRNAs d' and e' were spliced at their 5' termini to the major late tripartite leader which is found in all mRNAs in the major late transcription unit. mRNAs d' and e' and the 11.6K protein were the only E3 mRNAs and protein that were scarce early and were greatly amplified at late stages of infection. This suggests that specific cis- or trans-acting sequences may function to enhance the splicing of mRNAs d' and e' at late stages of infection and perhaps to suppress the splicing of mRNAs d and e at early stages of infection. We propose that the 11.6K gene be considered not only a member of region E3 but also a member of the major late transcription unit.  (+info)

Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. (15/424)

The human papillomaviruses (HPVs) associated with genital tract lesions can be classified as either "high risk" or "low risk" based on their association with human anogenital cancer. The E7 proteins of the high-risk and the low-risk viruses are quite similar in their amino acid composition and structural organization yet differ in their transforming potential and in a number of biochemical properties. A series of chimeric proteins consisting of segments of the high-risk HPV-16 and the low-risk HPV-6 E7 proteins were constructed in order to define which domains within the amino-terminal half of E7 were responsible for the different biological and biochemical properties. The E7 oncogenic capacity, which was determined by assaying transformation of baby rat kidney cells in cooperation with an activated ras oncogene, segregated with the retinoblastoma tumor suppressor protein (pRB) binding domain of the HPV-16 E7 protein. A comparison of the pRB binding sites of the sequenced genital tract HPVs revealed a consistent amino acid difference (aspartic acid/glycine) between the high-risk and low-risk viruses. Single amino acid substitution mutations were generated at this position in the HPV-6 and HPV-16 E7 proteins, and this single amino acid residue was shown to be the principal determinant responsible for the differences in the apparent pRB binding affinity and transformation capacity distinguishing the HPV E7 proteins of the high-risk and low-risk HPVs.  (+info)

Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. (16/424)

The adenovirus E1A gene product, the simian virus 40 large tumor antigen, and the human papillomavirus E7 protein share a short amino acid sequence that constitutes a domain required for the transforming activity of these proteins. These sequences are also required for these proteins to bind to the retinoblastoma gene product (pRb). Recent experiments have shown that E1A can dissociate complexes containing the transcription factor E2F bound to pRb, dependent on this conserved sequence element. We now show that the E7 protein and the simian virus 40 large tumor antigen can dissociate the E2F-pRb complex, dependent on this conserved sequence element. We also find that the E2F-pRb complex is absent in various human cervical carcinoma cell lines that either express the E7 protein or harbor an RB1 mutation, suggesting that the loss of the E2F-pRb interaction may be an important aspect in human cervical carcinogenesis. We suggest that the ability of E1A, the simian virus 40 large tumor antigen, and E7 to dissociate the E2F-pRb complex may be a common activity of these viral proteins that has evolved to stimulate quiescent cells into a proliferating state so that viral replication can proceed efficiently. In circumstances in which a lytic infection does not proceed, the consequence of this action may be to initiate the oncogenic process in a manner analogous to the mutation of the RB1 gene.  (+info)