Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. (25/424)

Adenovirus E1A protein and cyclic AMP cooperate to induce transcription factor AP-1 and viral gene expression in mouse S49 cells. We report that a protein encoded within the viral E4 gene region acts to counterbalance the induction of AP-1 DNA-binding activity by E1A and cyclic AMP. Studies with mutant adenoviruses demonstrated that in the absence of E4orf4 protein, AP-1 DNA-binding activity is induced to substantially higher levels than in wild-type virus-infected cells. The induction is the result of increased production of JunB and c-Fos proteins. Hyperphosphorylated forms of c-Fos and E1A proteins accumulate in the absence of functional E4orf4 protein. We propose that the E4orf4 protein acts to inhibit the activity of a cellular kinase that phosphorylates both the E1A and c-Fos proteins. Phosphorylation-dependent alterations in the activity of c-Fos, E1A, or some unidentified protein might, then, lead to decreased synthesis of AP-1 components. This E4 function likely plays an important role in natural infections, since a mutant virus unable to express the E4orf4 protein is considerably more cytotoxic than the wild-type virus.  (+info)

Adenovirus E1A proteins stimulate inositol phospholipid metabolism in PC12 cells. (26/424)

To study the influence of nuclear oncogenes on inositol phospholipid metabolism, we examined the various parameters of inositol phospholipid metabolism in PC12 cells expressing adenovirus type 12 or adenovirus type 5 E1A. Although the inositol 1,4,5-trisphosphate content was increased only slightly, the diacylglycerol content was 2.4-fold higher in E1A-expressing PC12 cells. Furthermore, we found that the activity of phospholipase C, one of the key enzymes in inositol phospholipid metabolism, was increased at least five- to eightfold. Diacylglycerol kinase activity in the membrane fraction was 10 to 15% of that in parental PC12 cells. Overall protein kinase C activities in E1A-expressing PC12 cells were decreased, but the activity of membrane-bound protein kinase C was significantly increased. These observations clearly indicate that inositol phospholipid metabolism is stimulated in cells producing E1A and suggest that nuclear oncogene E1A has the ability to stimulate inositol phospholipid metabolism.  (+info)

A block in release of progeny virus and a high particle-to-infectious unit ratio contribute to poor growth of enteric adenovirus types 40 and 41 in cell culture. (27/424)

The fastidious enteric adenovirus (FEAd) types 40 (Ad40) and 41 (Ad41) are found in stool specimens of infants and young children in association with gastroenteritis. Although they can be isolated routinely from clinical specimens by using 293 cells, they are propagated with variable success in cell lines which support the replication of other adenovirus serotypes. HeLa cells are generally considered to be nonpermissive for the replication of FEAds, but in this study, Ad40 and Ad41 grew to comparable titers in individual 293 and HeLa cells. However, virus was not efficiently released from infected HeLa cells and thus did not undergo multiple cycles of infection in HeLa cell cultures. The block in virus release was not overcome in KB18 cells which, like 293 cells, constitutively express proteins encoded by the E1B region of a subgroup C adenovirus (in this case Ad2). Moreover, it was apparent from these studies that Ad40 and Ad41 have particle-to-infectious unit ratios several orders of magnitude greater than that for Ad5, even in 293 cells which express the E1A and E1B proteins of Ad5 and are considered to be permissive for replication of the FEAds. Neither the block in release of progeny virus nor the high particle-to-infectious unit ratio is explained solely by the defect in expression of the E1B 55K protein identified by Mautner et al. (V. Mautner, N. MacKay, and V. Steinthorsdottir, Virology 171:619-622, 1989; V. Mautner, N. MacKay, and K. Morris, Virology 179:129-138, 1990).  (+info)

Characterization of the adenovirus E3 protein that down-regulates the epidermal growth factor receptor. Evidence for intermolecular disulfide bonding and plasma membrane localization. (28/424)

We have characterized the biosynthesis and processing of a 91 amino acid hydrophobic integral membrane protein encoded by human group C adenoviruses which down-regulates the EGF receptor (Carlin, C. R., Tollefson, A. E., Brady, H. A., Hoffman, B. L., and Wold, W. S. M. (1989) Cell 57, 135-144). Previous studies have shown that two immunologically related proteins are produced in vivo, a 13.7-kDa protein encoded by E3 message f and a 11.3-kDa protein derived from 13.7 kDa by proteolysis (Hoffman, B. L., Ullrich, A., Wold, W. S. M., and Carlin, C. R. (1990) Mol. Cell. Biol. 10, 5521-5524; Tollefson, A. E., Krajcsi, P., Yei, S., Carlin, C. R., and Wold, W. S. M. (1990) J. Virol. 64, 794-801). We report here that the 13.7- and 11.3-kDa proteins form intermolecular disulfide bonds cotranslationally at Cys-31 and tend to migrate as high molecular weight aggregates under nonreducing conditions. Both proteins are also present at the cell surface, as evidenced by specific immunoprecipitation from intact monolayers enzymatically labeled with 125I. Moreover, an antiserum specific for a putative extracellular epitope recognizes the same viral proteins as antibodies directed against a C-terminal synthetic 15-mer. The 13.7- and 11.3-kDa proteins are detected at early time points during pulse-chase radiolabeling of infected cells, do not undergo any further changes in molecular weight, and focus at their predicted isoelectric points (7.4 and 7.2, respectively). Identical results are obtained in stable transfectants constitutively expressing only 13.7 and 11.3 kDa, suggesting that biosynthesis and processing is not dependent on other viral proteins. These results have been incorporated into a computer-based model to predict the orientation of 13.7 and 11.3 kDa in the lipid bilayer. This model provides a basis for testing predictions regarding the topology of the viral proteins, as well as putative interactions with heterologous proteins in the microenvironment of the plasma membrane that cause down-regulation of the epidermal growth factor receptor.  (+info)

Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. (29/424)

The retinoblastoma (Rb) gene product forms a complex with the cellular transcription factor DRTF1, a property assumed to be important for mediating negative growth control because certain viral oncogenes, such as adenovirus E1a, prevent this interaction and mutant Rb alleles, which have lost the capacity to regulate growth, encode proteins that fail to associate with DRTF1. In this study, we show that the wild-type Rb protein can specifically repress transcription from promoters driven by DRTF1 whereas a naturally occurring mutant Rb protein cannot. Furthermore, Rb-mediated transcriptional repression can be overridden by adenovirus E1a; this requires regions in E1a necessary for cellular transformation. The Rb protein therefore acts in trans to repress the transcriptional activity of DRTF1 whereas adenovirus E1a prevents this interaction and thus maintains DRTF1 in a constitutively active state. The Rb protein and adenovirus E1a therefore have opposite effects on the activity of a common molecular target. Transcriptional repression mediated by the Rb protein and inactivation of repression by the E1a protein are likely to play an important role in mediating their biological effects.  (+info)

Role of the adenovirus E3-19k conserved region in binding major histocompatibility complex class I molecules. (30/424)

The adenovirus early region 3 glycoprotein E3-19k binds to and down regulates major histocompatibility complex (MHC) class I molecules in infected cells. We previously identified a 20-amino-acid conserved region in E3-19k by comparison of protein sequences from four different adenovirus serotypes. The roles of the E3-19k C-terminal and adjacent conserved regions in the interaction with MHC class I molecules have been examined. A functional class I-binding glycoprotein was expressed from the cloned E3 18.5-kDa open reading frame of adenovirus type 35. Truncations and single-amino-acid mutations in the adenovirus type 35 glycoprotein were created by site-directed in vitro mutagenesis and tested for the ability to associate with MHC class I molecules. Deletion of most of the transmembrane domain and cytoplasmic tail did not affect binding to class I molecules. However, removal of an additional 11 amino acids eliminated binding and changed the conformation of the adjacent conserved region. Separate mutations of residues Asp-107 and Met-110, within the conserved region, severely reduced or eliminated binding. These data indicate that the E3-19k conserved region plays a crucial role in binding to MHC class I molecules.  (+info)

Transcriptional repression of the E2-containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 gene. (31/424)

The protein product of the retinoblastoma susceptibility gene, p110RB1, is a nuclear phosphoprotein [W.H. Lee, J.Y. Shew, F.D. Hong, T.W. Sery, L.A. Donoso, L.J. Young, R. Bookstein, and E.Y. Lee, Nature (London) 329:642-645, 1987] with properties of a cell cycle regulator (K. Buchkovich, L.A. Duffy, and E. Harlow, Cell 58:1097-1105, 1989; P.L. Chen, P. Scully, J.Y. Shew, J.Y. Wang, and W.H. Lee, Cell 58:1193-1198, 1989; J.A. DeCaprio, J.W. Ludlow, D. Lynch, Y. Furukawa, J. Griffin, H. Piwnica-Worms, C.M. Huang, and D.M. Livingston, Cell 58:1085-1095, 1989; and K. Mihara, X.R. Cao, A. Yen, S. Chandler, B. Driscoll, A.L. Murphree, A. TAng, and Y.K. Fung, Science 246:1300-1303, 1989). Although the mechanism of action of p110RB1 remains unknown, several lines of evidence suggest that it plays a role in the regulation of transcription. We now show that overexpression of p110RB1 causes repression of the adenovirus early promoter EIIaE and the promoters of two cellular genes, c-myc and RB1, both of which contain E2F-binding motifs. Mutation of the E2 element in the c-myc promoter abolishes p110RB1 repression. We also demonstrate that a p110RB1 mutant, which is refractory to cell cycle phosphorylation but intact in E1a/large T antigen-binding properties, represses EIIaE with 50- to 80-fold greater efficiency than wild-type p110RB1. These data provide evidence that hypophosphorylated p110RB1 actively represses expression of genes with promoters containing the E2F-binding motif (E2 element).  (+info)

Down-regulation of E1a expression by E3 gene products in group C adenoviruses. (32/424)

Mutant group C adenoviruses defective in expression of the E3 transcription unit were found to overexpress E1a proteins relative to wild-type adenoviruses. This result suggests that one or more proteins encoded in the E3 region (present in wild-type viruses) down-regulate E1a expression. This interpretation was confirmed by transfection experiments in which a plasmid expressing the E3 region reduced expression of E1a in 293 cells. Experiments to examine the molecular basis of this down-regulation of E1a suggest that E3 protein products interfere with the translation of viral mRNA molecules.  (+info)