Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. (65/111)

First-generation recombinant adenoviruses that lack E1 sequences have shown tremendous promise in animal and human models of gene therapy. Important limitations of these vectors are that recombinant gene expression is transient and inflammation occurs at the site of gene transfer. Our hypothesis for generating vectors with increased persistence is that present recombinant adenoviruses express viral proteins that stimulate cellular immune responses leading to destruction of the infected cells and repopulation of the organ with non-transgene-containing cells. This model predicts that further crippling of the virus will improve persistence and diminish pathology. We describe in this report second-generation recombinant adenoviruses harboring a beta-galactosidase-expressing transgene in which a temperature-sensitive mutation has been introduced into the E2A gene of an E1-deleted recombinant. At nonpermissive temperature, this virus fails to express late gene products, even when E1 is expressed in trans. The biology of this recombinant was studied in vivo in the context of mouse liver, a setting that is permissive for adenovirus type 5 replication. Animals that received the second-generation virus expressed the transgene for at least 70 days, whereas expression of the first-generation virus was no longer than 14 days. In addition, the inflammatory response, as measured by infiltration of CD8+ T cells, was blunted and delayed in livers infected with second-generation virus. These studies illustrate that modifications that disrupt structural protein expression in recombinant adenoviruses may be useful in enhancing their utility for gene therapy.  (+info)

Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. (66/111)

The adenovirus single-stranded DNA binding protein (Ad DBP) is a multifunctional protein required, amongst other things, for DNA replication and transcription control. It binds to single- and double-stranded DNA, as well as to RNA, in a sequence-independent manner. Like other single-stranded DNA binding proteins, it binds ssDNA, cooperatively. We report the crystal structure, at 2.6 A resolution, of the nucleic acid binding domain. This domain is active in DNA replication. The protein contains two zinc atoms in different, novel coordinations. The zinc atoms appear to be required for the stability of the protein fold rather than being involved in direct contacts with the DNA. The crystal structure shows that the protein contains a 17 amino acid C-terminal extension which hooks onto a second molecule, thereby forming a protein chain. Deletion of this C-terminal arm reduces cooperativity in DNA binding, suggesting a hook-on model for cooperativity. Based on this structural work and mutant studies, we propose that DBP forms a protein core around which the single-stranded DNA winds.  (+info)

The topology of the promoter of RNA polymerase II- and III-transcribed genes is modified by the methylation of 5'-CG-3' dinucleotides. (67/111)

In eukaryotic cells, RNA polymerase II- and III-transcribed promoters can be inactivated by sequence-specific methylation. For some promoter motifs, the introduction of 5-methyldeoxycytidine (5-mC) residues has been shown to alter specific promoter motif-protein interactions. To what extent does the presence of 5-mC in promoter or regulatory DNA sequences affect the structure of DNA itself. We have investigated changes in DNA bending in three naturally occurring DNA elements, the late E2A promoter of adenovirus type 2 (Ad2) DNA, one of our main model systems, the VAI (virus-associated) RNA gene of Ad2 DNA, and an Alu element associated with the human angiogenin gene. Alterations in electrophoretic mobility of differently permuted promoter segments in non-denaturing polyacrylamide gels have been used as assay system. In the late E2A promoter of Ad2 DNA, a major and possibly some minor DNA bending motifs exist which cause deviations in electrophoretic mobility in comparison to coelectrophoresed marker DNA fragments devoid of DNA bending motifs. DNA elements have been specifically in vitro methylated by the HpaII (5'-CCGG-3'), the FnuDII (5'-CGCG-3'), or the CpG DNA methyltransferase from Spiroplasma species (M-SssI; 5'-CG-3'). Methylation by one of these DNA methyltransferases influences the electrophoretic mobility of the three tested promoter elements very strikingly, though to different extents. It cannot be predicted whether sequence-specific promoter methylation increases or decreases electrophoretic mobility; these changes have to be experimentally determined. Methylation of the E. coli dcm (5'-CCA/TGG-3') sites in some of the DNA constructs does not make a contribution to mobility changes. It is concluded that sequence-specific methylations in promoter or regulatory DNA elements can alter the bending of DNA very markedly. This parameter may contribute significantly to the silencing of promoters, probably via altering spatial relationships among DNA-bound transcription factors.  (+info)

Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. (68/111)

Three independent point mutations within residues 97 to 103 of the simian virus 40-small-t antigen (small-t) greatly reduced the ability of purified small-t to inhibit protein phosphatase 2A in vitro. These mutations affected the interaction of small-t antigen with the protein phosphatase 2A A subunit translated in vitro, and a peptide from the region identified by these mutations released the A subunit from immune complexes. When introduced into virus, the mutations eliminated the ability of small-t to enhance viral transformation of growth-arrested rat F111 cells. In contrast, the mutant small-t antigens were unimpaired in the transactivation of the adenovirus E2 promoter, an activity which was reduced by a double mutation in small-t residues 43 and 45.  (+info)

In vivo transcription from the adenovirus E2 early promoter by RNA polymerase III. (69/111)

We have previously reported that the subgroup C adenovirus E2 early (E2E) RNA polymerase II promoter can specify efficient in vitro transcription by RNA polymerase III. We now show that promoter proximal sequences of the E2E transcription unit are also transcribed by RNA polymerase III in nuclei isolated from adenovirus-infected cells. Small E2E RNA species that possessed the same properties as in vitro synthesized RNA polymerase III E2E transcripts were detected in cytoplasmic RNA populations from infected cells by using blotting, primer extension, and RNase protection assays. The 3' termini of these RNAs were mapped to thymidine-rich sequences typical of RNA polymerase III termination sites. These results demonstrate that a single gene can be transcribed by both RNA polymerase II and RNA polymerase III in vivo.  (+info)

DNA-binding specificity and trans-activating potential of the leukemia-associated E2A-hepatic leukemia factor fusion protein. (70/111)

Hybrid transcription factors, resulting from gene fusions in the wake of chromosomal translocations, have been implicated in leukemogenesis, but their precise contributions to oncogenic conversion remain unclear. The E2A-HLF fusion gene, formed by a t(17;19)(q22;p13) in childhood pro-B-cell acute lymphoid leukemia, encodes a hybrid protein that contains the trans-activation domain of E2A (E12/E47) linked to the bZIP DNA-binding and dimerization domain of hepatic leukemia factor (HLF). Here we report that both HLF and E2A-HLF bind to a 10-bp consensus sequence, 5'-GTTACGTAAT-3', with a core dyad-symmetric motif characteristic of the bZIP scissors-grip model of DNA binding. A probe containing this sequence bound chimeric E2A-HLF proteins in nuclear extracts of a leukemic cell line (UOC-B1) containing the t(17;19), as demonstrated by complexes supershifted with antibodies specific for amino-terminal epitopes of E2A or carboxyl-terminal eptiopes of HLF. E2A-HLF functioned as a potent trans activator of reporter gene expression from a plasmid that contained the consensus DNA-binding sequence. Interestingly, wild-type HLF was restricted in its capacity to act as a trans activator, functioning in human fetal kidney cells but not HepG2 hepatocarcinoma cells or NIH 3T3 mouse fibroblasts. The ability of the E2A-HLF hybrid protein to bind DNA in a sequence-specific manner and trans activate the expression of artificial reporter genes suggests that it could subvert transcriptional programs that normally control the growth, differentiation, and survival of lymphoid progenitor cells.  (+info)

The impact of 5'-CG-3' methylation on the activity of different eukaryotic promoters: a comparative study. (71/111)

The inhibiting or inactivating effects of position-specific promoter methylation in different viral or human cellular promoters Ad2 E2AL, SV40, LTR-MMTV, HSV-tk, TNF alpha) have been compared by in vitro 5'-CCGG-3' methylation by M-HpaII or the M-SssI DNA-methyltransferase, respectively. In most promoters, 5'-CG-3' methylation reduces activity to a few percent of that of mock-methylated controls. The number of 5'-CG-3' dinucleotides in a promoter does not strictly correlate with the extent of methylation inhibition. The LTR-MMTV promoter, which lacks 5'-CG-3' dinucleotides, is not affected by methylation. The late E2A promoter of Ad2 DNA cannot be inactivated by 5'-CCGG-3' methylation when the construct carries the strong cytomegalovirus enhancer devoid of this sequence. In contrast, 5'-CG-3' methylation shuts this promoter off even in the presence of this enhancer.  (+info)

Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells. (72/111)

A newly developed rat long-term bone marrow culture system was used to study the role of Pan/E2A basic helix-loop-helix transcription factors during B-cell development. In this system, B-lymphocyte progenitors actively differentiate into mature B cells. Monoclonal (Yae) and polyclonal (anti-Pan) antibodies were employed to characterize the expression of Pan proteins by Western blot assay during hematopoiesis and to examine the components of immunoglobulin heavy-chain gene enhancer element-binding species by electrophoretic mobility shift assay. During B-cell development, the appearance of Pan/E2A proteins preceded the expression of immunoglobulin heavy-chain protein. A Pan-containing immunoglobulin heavy-chain enhancer element (mu E5)-binding species (BCF1), composed of immunoreactive Pan-1/E47 but not Pan-2/E12, was observed concomitantly with the detection of Pan/E2A proteins. In addition to BCF1, other mu E5-binding species were detected which were not recognized by the Yae antibody. Two of these species were present in primary B-lymphocyte and myeloid cultures and were recognized by an anti-upstream stimulatory factor antiserum. Although Pan/E2A proteins have been proposed to be ubiquitous, Pan/E2A proteins were not detected in primary myeloid cultures composed mainly of granulocytes and macrophages or in the macrophage cell line J774. The absence of Pan/E2A proteins in differentiated myeloid cells correlated with low steady-state levels of Pan/E2A RNA. However, Pan/E2A proteins were present in a promyeloid cell line, 32DCL3, suggesting that extinction of Pan/E2A expression may play a role in myelopoiesis.  (+info)