Suppression and overexpression of adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) influences zebrafish embryo development: a possible role for AHCYL1 in inositol phospholipid signaling. (49/196)

Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with approximately 50% protein identity to adenosylhomocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-l-homocysteine, the by-product of S-adenosyl-l-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs (zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.  (+info)

IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1). (50/196)

Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels that are located on intracellular Ca(2+) stores. We previously identified an IP(3)R binding protein, termed IP(3)R binding protein released with IP(3) (IRBIT). Because IRBIT is released from IP(3)R by physiological concentrations of IP(3), we hypothesized that IRBIT is a signaling molecule that is released from IP(3)R and regulates downstream target molecules in response to the production of IP(3). Therefore, in this study, we attempted to identify the target molecules of IRBIT, and we succeeded in identifying Na(+)/HCO(3)(-) cotransporter 1 (NBC1) as an IRBIT binding protein. Of the two major splicing variants of NBC1, pancreas-type NBC1 (pNBC1) and kidney-type NBC1 (kNBC1), IRBIT was found to bind specifically to pNBC1 and not to bind to kNBC1. IRBIT binds to the N-terminal pNBC1-specific domain, and its binding depends on the phosphorylation of multiple serine residues of IRBIT. Also, an electrophysiological analysis in Xenopus oocytes revealed that pNBC1 requires coexpression of IRBIT to manifest substantial activity comparable with that of kNBC1, which displays substantial activity independently of IRBIT. These results strongly suggest that pNBC1 is the target molecule of IRBIT and that IRBIT has an important role in pH regulation through pNBC1. Also, our findings raise the possibility that the regulation through IRBIT enables NBC1 variants to have different physiological roles.  (+info)

IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. (51/196)

The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-gated intracellular Ca2+ channels. We previously identified an IP3R binding protein, IRBIT, which binds to the IP3 binding domain of IP3R and is dissociated from IP3R in the presence of IP3. In the present study, we showed that IRBIT suppresses the activation of IP3R by competing with IP3 by [3H]IP3 binding assays, in vitro Ca2+ release assays, and Ca2+ imaging of intact cells. Multiserine phosphorylation of IRBIT was essential for the binding, and 10 of the 12 key amino acids in IP3R for IP3 recognition participated in binding to IRBIT. We propose a unique mode of IP3R regulation in which IP3 sensitivity is regulated by IRBIT acting as an endogenous "pseudoligand" whose inhibitory activity can be modulated by its phosphorylation status.  (+info)

A single mutation at Tyr143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide-adenine dinucleotide. (52/196)

Recently, we have described the first human case of AdoHcyase (S-adenosylhomocysteine hydrolase) deficiency. Two point mutations in the AdoHcyase gene, the missense mutation p.Y143C (AdoHcyase in which Tyr143 is replaced by cysteine) and the truncation mutation p.W112stop (AdoHcyase in which Trp112 is replaced by opal stop codon) were identified [Baric, Fumic, Glenn, Cuk, Schulze, Finkelstein, James, Mejaski-Bosnjak, Pazanin, Pogribny et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 4234-4239]. To elucidate the molecular and catalytic properties of AdoHcyase, we have made recombinant wild-type and mutant p.Y143C (AdoHcyase in which Tyr143 is replaced by cysteine) enzymes for a comparative analysis. The catalytic rates of p.Y143C protein in the directions of S-adenosylhomocysteine synthesis or hydrolysis are decreased from 65% to 75%. Further, the oxidation states of coenzyme NAD differ between mutant and wild-type protein, with an increased NADH accumulation in the mutant p.Y143C enzyme of 88% NADH (wild-type contains 18% NADH). Quantitative binding of NAD is not affected. Native polyacrylamide gel electrophoresis showed, that mutant p.Y143C subunits are able to form the tetrameric complex as is the wild-type enzyme. CD analysis showed that the p.Y143C mutation renders the recombinant protein thermosensitive, with an unfolding temperature significantly reduced by 7 degrees C compared with wild-type protein. Change of Glu115 to lysine in wild-type protein causes a change in thermosensitivity almost identical with that found in the p.Y143C enzyme, indicating that the thermosensitivity is due to a missing hydrogen bond between Tyr143 and Glu115. We emphasize involvement of this particular hydrogen bond for subunit folding and/or holoenyzme stability. In summary, a single mutation in the AdoHcyase affecting both the oxidation state of bound co-factor NAD and enzyme stability is present in a human with AdoHcyase deficiency.  (+info)

Carbocyclic pyrimidine nucleosides as inhibitors of S-adenosylhomocysteine hydrolase. (53/196)

The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase.  (+info)

A reversible S-adenosyl-L-homocysteine hydrolase inhibitor ameliorates experimental autoimmune encephalomyelitis by inhibiting T cell activation. (54/196)

The reversible S-adenosyl-l-homocysteine hydrolase inhibitor DZ2002 [methyl 4-(adenin-9-yl)-2-hydroxybutanoate] suppresses antigen-induced-specific immune responses, particularly type 1 helper T cell (Th1)-type responses. Experimental autoimmune encephalomyelitis (EAE) is thought to be a Th1 cell-mediated inflammatory demyelinating autoimmune disease model of human multiple sclerosis (MS). In this study, we examined the effects of DZ2002 on active EAE induced by myelin oligodendrocyte glycoprotein (MOG) 35-55 in female C57BL/6 mice. Administration of DZ2002 (50 mg/kg/day i.p.) significantly reduced the incidence and severity of EAE, which was associated with the inhibition of MOG35-55-specific T cell proliferation and Th1-type cytokine production. In vitro studies also demonstrated that DZ2002 inhibited anti-CD3/28-induced naive T cell activation concomitant with the down-regulation of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D3, and the up-regulation or protection of the CDK inhibitor p27. These findings highlight the fact that DZ2002 likely prevents EAE by suppressing T cell activation and suggest its utility in the treatment of MS and other Th1-mediated inflammatory diseases.  (+info)

A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. (55/196)

S-adenosylhomocysteine hydrolase (SAH) is a key enzyme in the maintenance of methylation homeostasis in eukaryotes because it is needed to metabolize the by-product of transmethylation reactions, S-adenosylhomocysteine (AdoHcy), which causes by-product inhibition of methyltransferases (MTase's). Complete loss of SAH function is lethal. Partial loss of SAH function causes pleiotropic effects including developmental abnormalities and reduced cytosine methylation. Here we describe a novel partial-function missense allele of the Arabidopsis SAH1 gene that causes loss of cytosine methylation specifically in non-CG contexts controlled by the CMT3 DNA MTase and transcriptional reactivation of a silenced reporter gene, without conferring developmental abnormalities. The CMT3 pathway depends on histone H3 lysine 9 methylation (H3 mK9) to guide DNA methylation. Our results suggest that this pathway is uniquely sensitive to SAH impairment because of its requirement for two transmethylation reactions that can both be inhibited by AdoHcy. Our results further suggest that gene silencing pathways involving an interplay between histone and DNA methylation in other eukaryotes can be selectively impaired by controlled SAH downregulation.  (+info)

Three-dimensional structure of S-adenosyl-L-homocysteine hydrolase from Plasmodium falciparum. (56/196)

Structural information of Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH) has been expected to provide new-type chemotherapeutic agents against malaria. Here we report the crystal structure of PfSAHH. The present structure should provide opportunities to design potent and selective PfSAHH inhibitors.  (+info)