Flavodoxin: an allosteric inhibitor of AMP nucleosidase from Azotobacter vinelandii. (9/2141)

Flavodoxin, which participates in nitrogen fixation, was found to be a potent allosteric inhibitor of AMP nucleosidase [EC 3.2.2.4] from Azotobacter vinelandii. It inhibited the enzyme by decreasing its affinity for ATP without affecting the maximum velocity. The inhibition constant for flavodoxin was estimated to be 10 muM, which is within the range of physiological concentration in the cells. The concentration of flavodoxin able to alter the activity in vitro suggests that this phenomenon could be of significance in the regulation of flavin biosynthesis in vivo. Flavin mononucleotide (FMN), a prosthetic group of flavodoxin, was also found to act as an allosteric inhibitor. Since no inhibitory action of apo-flavodoxin was observed, it was concluded that the FMN chromophore of the flavodoxin is responsible for the inhibition of the enzyme by this protein.  (+info)

Changes in mitochondrial phosphorylative activity and adenylate energy charge of regenerating rabbit liver. (10/2141)

The changes in the cellular concentrations of ATP, ADP, and AMP and in oxidative phosphorylation of mitochondria were investigated in the remaining liver of partially hepatectomized rabbits. The energy charge (defined as half of the average number of anhydride-bonded phosphate groups per adenosine moiety) of the liver remnant decreased from 0.866 to 0.767 (p less than 0.01) within 24 hr after hepatectomy, and then increased to a substantially higher level than normal within 7 days. On the other hand, the mitochondrial phosphyorylative activity increased rapidly to 170 per cent of the control within 12 hr and then retruned to normal within 7 days. The mitochondrial phosphorylative activity was inversely correlated with energy charge of the liver remnant (r = -0.75, p less less than 0.01). The maximal enhancement of mitochondrial phosphorylative activity was found in mitochondria obtained from the liver remnant with the lowest level of energy charge, suggesting a response of mitochondria in vivo involving enhanced biosynthetic ATP-utilizing reactions at an early stage of the regenerating process. The enhancement of phosphorylative activity was accompanied by a rise in the respiratory control ratio, P/O ratio and state 3 respiration. The adenylate kinase [EC 2.7.4.3] activity in the liver remnant increased to more than 160% of the control within 2 days after partial hepatectomy, while the pyruvate kinase [EC 2.7.1.40] activity decreased remarkably. However, the changes in the two enzyme activities did not correlate with those of mitochondrial phosphorylative activity or the energy charge of the liver remnant.  (+info)

Use of alanosine as a methylthioadenosine phosphorylase-selective therapy for T-cell acute lymphoblastic leukemia in vitro. (11/2141)

Methylthioadenosine phosphorylase (MTAP) is an important enzyme for the salvage of adenine and methionine and is deficient in a variety of cancers including T-cell acute lymphocytic leukemia (T-ALL). Previously, we reported that the MTAP gene was deleted in over 30% of T-ALL patients at both diagnosis and relapse. We now report that MTAP-primary T-ALL cells are more sensitive to the toxicity of L-alanosine, an inhibitor of de novo AMP synthesis, than are MTAP+ primary T-ALL cells. As measured by [3H]thymidine incorporation, DNA synthesis in all seven MTAP-primary T-ALL cells was inhibited by L-alanosine with a mean IC50 of 4.8+/-5.3 ILM (range, 0.3-11.3 microM). On the other hand, the IC50 for 60% (12 of 20) of MTAP+ primary T-ALL was 19+/-18 microM (range, 1.7-67 microM; P = 0.02), whereas the remaining 40% (8 of 20) had an IC50 of >80 microM4. Furthermore, normal lymphocytes and MTAP+ primary T-ALL cells were rescued from L-alanosine toxicity by the MTAP substrate 5'-deoxyadenosine, but MTAP-T-ALL cells were not. These results indicate that normal cells, which are intrinsically MTAP+, would be protected from L.-alanosine toxicity, whereas MTAP-tumor cells would be killed. Thus, our results support the use of L-alanosine alone or in combination with a salvage agent as a MTAP-selective therapy and therefore lay the foundation for the initiation of clinical trials for the treatment of T-ALL and other MTAP-deficient malignancies with L-alanosine.  (+info)

Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation. (12/2141)

We herein report that Azorhizobium caulinodans PII and GlnK are not necessary for glutamine synthetase (GS) adenylylation whereas both proteins are required for complete GS deadenylylation. The disruption of both glnB and glnK resulted in a high level of GS adenylylation under the condition of nitrogen fixation, leading to ammonium excretion in the free-living state. PII and GlnK also controlled nif gene expression because NifA activated nifH transcription and nitrogenase activity was derepressed in glnB glnK double mutants, but not in wild-type bacteria, grown in the presence of ammonia.  (+info)

Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure. (13/2141)

The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase.  (+info)

T4 RNA ligase catalyzes the synthesis of dinucleoside polyphosphates. (14/2141)

T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of labeled Ap4A was observed: ATP was acting as both donor (Km, microm) and acceptor (Km, mm) of AMP from the enzyme. Whereas, as previously known, ATP or dATP (but not other nucleotides) were able to form the E-AMP complex, the specificity of a compound to be acceptor of AMP from the E-AMP complex was very broad, and with Km values between 1 and 2 mm. In the presence of a low concentration (0.02 mm) of [alpha-32P] ATP (enough to form the E-AMP complex, but only marginally enough to form Ap4A) and 4 mm of the indicated nucleotides or P3, the relative rate of synthesis of the following radioactive (di)nucleotides was observed: Ap4X (from XTP, 100); Ap4dG (from dGTP, 74); Ap4G (from GTP, 49); Ap4dC (from dCTP, 23); Ap4C (from CTP, 9); Ap3A (from ADP, 5); Ap4ddA, (from ddATP, 1); p4A (from P3, 200). The enzyme also synthesized efficiently Ap3A in the presence of 1 mm ATP and 2 mm ADP. The following T4 RNA ligase donors were inhibitors of the synthesis of Ap4G: pCp > pAp > pA2'p.  (+info)

Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5'-AMP. (15/2141)

Salivary gland homogenates of the sand fly Phlebotomus papatasi contain large amounts of adenosine and 5'-AMP, of the order of 1 nmol per pair of glands, as demonstrated by liquid chromatography, ultraviolet spectrometry, mass spectrometry and bioassays. These purines, 75-80 % of which are secreted from the glands following a blood meal, have vasodilatory and anti-platelet activities and probably help the fly to obtain a blood meal. Salivary 5'-AMP is also responsible for the previously reported protein phosphatase inhibitor in the salivary glands of P. papatasi, which is shown to be artifactual in nature as a result of allosteric modification by AMP of the phosphatase substrate used (phosphorylase a).  (+info)

Effect of cAMP on the activity and the phosphorylation of Na+,K(+)-ATPase in rat thick ascending limb of Henle. (16/2141)

BACKGROUND: In rat kidney medullary thick ascending limb of Henle's loop (MTAL), activation of protein kinase A (PKA) was previously reported to inhibit Na+,K(+)-ATPase activity. This is paradoxical with the known stimulatory effect of cAMP on sodium reabsorption. Because this inhibition was mediated by phospholipase A2 (PLA2) activation, a pathway stimulated by hypoxia, we evaluated the influence of oxygen supply on cAMP action on Na+,K(+)-ATPase in MTAL. METHODS: Ouabain-sensitive 86Rb uptake and Na+,K(+)-ATPase activity were measured in isolated MTALs. Cellular ATP content and the phosphorylation level of Na+,K(+)-ATPase were determined in suspensions of outer medullary tubules. Experiments were carried out under nonoxygenated or oxygenated conditions in the absence or presence of PKA activators. RESULTS: cAMP analogues or forskolin associated with 3-isobutyl-1-methylxanthine (IBMX) inhibited ouabain-sensitive 86Rb uptake in nonoxygenated MTALs. In contrast, when oxygen supply was increased, cAMP stimulated ouabain-sensitive 86Rb uptake and Na+,K(+)-ATPase activity. Improved oxygen supply was associated with increased intracellular ATP content. The phosphorylation level of the Na+,K(+)-ATPase alpha subunit was increased by cAMP analogues or forskolin associated with IBMX in oxygenated as well as in nonoxygenated tubules. Under nonoxygenated conditions, the inhibition of Na+,K(+)-ATPase was dissociated from its cAMP-dependent phosphorylation, whereas under oxygenated conditions, the stimulatory effect of cAMP analogues on ouabain-sensitive 86Rb uptake was linearly related and cosaturated with the level of phosphorylation of the Na+,K(+)-ATPase alpha subunit. CONCLUSION: In oxygenated MTALs, PKA-mediated stimulation of Na+,K(+)-ATPase likely participates in the cAMP-dependent stimulation of sodium reabsorption. Under nonoxygenated conditions, this stimulatory pathway is likely overridden by the PLA2-mediated inhibitory pathway, a possible adaptation to protect the cells against hypoxic damage.  (+info)