The two-state dimer receptor model: a general model for receptor dimers. (33/122)

Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.  (+info)

Involvement of peripheral adenosine A2 receptors in adenosine A1 receptor-mediated recovery of respiratory motor function after upper cervical spinal cord hemisection. (34/122)

BACKGROUND/OBJECTIVE: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection. METHODS: Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n=12) or excised (H-CBE; n=12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve. RESULTS: Administration of CGS-21680 before DPCPX (n=6) in H-CBI rats induced a significantly greater recovery (58.5 +/- 3.6%) than when DPCPX (42.6 +/- 4.6%) was administered (n=6) alone. In H-CBE rats, prior administration of CGS-21680 (n=6) did not enhance recovery over that induced by DPCPX (n=6) alone. Recovery in H-CBE rats amounted to 39.7 +/- 3.7% and 38.4 + 4.2%, respectively. CONCLUSIONS: Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor-mediated recovery of respiratory function after C2 hemisection. We conclude that a novel approach of targeting peripheral and central adenosine receptors can be therapeutically beneficial in alleviating compromised respiratory function after cervical spinal cord injury.  (+info)

Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts. (35/122)

OBJECTIVE: Adenosine deaminase (ADA) may be multifunctional, regulating adenosine levels and adenosine receptor (AR) agonism, and potentially modifying AR functionality. Herein we assess effects of ADA (and A1AR) deficiency on AR-mediated responses and ischaemic tolerance. METHODS: Normoxic function and responses to 20 or 25 min ischaemia and 45 min reperfusion were studied in isolated hearts from wild-type mice and from mice deficient in ADA and/or A1ARs. RESULTS: Neither ADA or A1AR deficiency significantly modified basal contractility, although ADA deficiency reduced resting heart rate (an effect abrogated by A1AR deficiency). Bradycardia and vasodilation in response to AR agonism (2-chloroadenosine) were unaltered by ADA deficiency, while A1AR deficiency eliminated the heart rate response. Adenosine efflux increased 10- to 20-fold with ADA deficiency (at the expense of inosine). Deletion of ADA improved outcome from 25 min ischaemia, reducing ventricular diastolic pressure (by 45%; 21+/-4 vs. 38+/-3mm Hg) and lactate dehydrogenase (LDH) efflux (by 40%; 0.12+/-0.01 vs. 0.21+/-0.02 U/g/min ischaemia), and enhancing pressure development (by 35%; 89+/-6 vs. 66+/-5mm Hg). Similar protection was evident after 20 min ischaemia, and was mimicked by the ADA inhibitor EHNA (5 microM). Deletion of ADA also enhanced tolerance in A1AR deficient hearts, though effects on diastolic pressure were eliminated. CONCLUSIONS: Deficiency of ADA does not alter sensitivities of cardiovascular A1 or A2ARs (despite markedly elevated [adenosine]), but significantly improves ischaemic tolerance. Conversely, A1AR deficiency impairs ischaemic tolerance. Effects of ADA deficiency on diastolic pressure appear solely A1AR-dependent while other ARs or processes additionally contribute to improved contractile recovery and reduced cell death.  (+info)

Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors. (36/122)

Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss-Webster mice (25-35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5-80 mg/kg, i.p.) or saline administration. The onset times of 'first myoclonic jerk' (FMJ) and 'generalized clonic seizures' (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10-60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. DPCPX (20 mg/kg) but not CSC (1-8 mg/kg) blocked the effect of tianeptine (80 mg/kg) on FMJ. Our results suggest that tianeptine delayed the onset time of PTZ-induced seizures via adenosine A1 receptors in mice. Thus, this drug may be a useful choice for epileptic patients with depression.  (+info)

Potentiation of adenosine A1 receptor agonist CPA-induced antinociception by paeoniflorin in mice. (37/122)

The effect of paeoniflorin (PF), a major constituent isolated from Paeony radix, on N6-Cyclopentyladenosine (CPA), a selective adenosine A1 receptor (A1 receptor) agonist, induced antinociception was examined in mice. In the tail-pressure test, CPA (0.05, 0.1, 0.2 mg/kg, s.c.) could induce antinociception in a dose-dependent manner. PF (5, 10, 20 mg/kg, s.c.) alone failed to exhibit any antinociceptive effect in mice; however, pretreatment of PF (20 mg/kg, s.c.) could significantly enhance CPA-induced antinociception. Additionally, pretreatment of 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.25 mg/kg, s.c.), a selective A1 receptor antagonist, could antagonize the antinociceptive effect of combining CPA with PF. Furthermore, in the competitive binding experiments, PF did not displace the binding of [3H]-8-Cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX) but displaced that of [3H]-2-Chloro-N6-cyclopentyladenosine ([3H]-CCPA, a selective A1 receptor agonist) to the membrane preparation of rat cerebral cortex. These results suggested that PF might selectively increase the binding and antinociceptive effect of CPA by binding with A1 receptor.  (+info)

Cell-specific differential modulation of human trabecular meshwork cells by selective adenosine receptor agonists. (38/122)

Activation of A1 and A2A subtype adenosine receptors (AR) likely exert opposing effects on outflow of aqueous humor, and thereby, on intraocular pressure. Selective agonists of adenosine receptor (AR) subtypes have previously been applied to trabecular meshwork (TM) and Schlemm's canal (SC) cells to identify the site(s) of differential purinergic modulation. However, the apparent changes in volume monitored by previously measuring projected cell area might have partially reflected cell contraction and relaxation. In addition, whole-cell current responses of the TM cells previously described were highly variable following application of selective A1, A2A and A3 agonists. The complexity of the electrophysiologic responses may have reflected cell heterogeneity of the populations harvested from collagenase digestion of TM explants. We now report measurements of TM-cell volume using calcein fluorescence quenching, an approach independent of contractile state. Furthermore, we have applied selective AR agonists to a uniform population of human TM cells, the hTM5 cell line. A1, but not A2A or A3, AR agonists triggered TM-cell shrinkage. Both A1 and A2A AR agonists produced reproducible increases in TM-cell whole-cell currents of similar magnitude. The results suggest that previous measurements of explant-derived TM cells may have reflected a range of responses from phenotypically different cell populations, and that the opposing effects of A1 and A2A agonists on outflow resistance are not likely to be mediated by actions on a single population of TM cells. These opposing effects might reflect AR responses by two or more subpopulations of TM cells, by TM and SC cells or by inner-wall SC cells, alone.  (+info)

Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. (39/122)

Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition arises from depression of excitatory synaptic transmission to hypocretin/orexin neurons because adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose dependent, pertussis toxin sensitive, and mediated by A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH by inhibition of hypocretin/orexin neurons.  (+info)

Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid. (40/122)

Elevated lipolysis and circulating free fatty acid (FFA) levels have been linked to the pathogenesis of insulin resistance. A1 adenosine receptor agonists are potent inhibitors of lipolysis. Several A1 agonists have been tested as potential antilipolytic agents; however, their effect on the cardiovascular system remains a potential problem for development of these agents as drugs. In the present study, we report that CVT-3619 [(2-{6-[((1R,2R)-2-hydroxycyclopentyl) amino] purin9-yl} (4S,5 S,2R,3R)5-[(2fluorophenylthio) methyl] oxolane-3,4-diol)], a novel partial A1 receptor agonist, significantly reduces circulating FFA levels without any effect on heart rate and blood pressure in awake rats. Rats were implanted with indwelling arterial and venous cannulas to obtain serial blood samples, record arterial pressure, and administer drug. CVT-3619 decreased FFA levels in a dose-dependent manner at doses from 1 up to 10 mg/kg. The FFA-lowering effect was blocked by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine. Triglyceride (TG) levels were also significantly reduced by CVT-3619 treatment in the absence and presence of Triton. Tachyphylaxis of the antilipolytic effect of CVT-3619 (1 mg/kg i.v. bolus) was not observed with three consecutive treatments. An acute reduction of FFA by CVT-3619 was not followed by a rebound increase of FFA as seen with nicotinic acid. The potency of insulin to decrease lipolysis was increased 4-fold (p < 0.01) in the presence of CVT-3619 (0.5 mg/kg). In summary, CVT-3619 is an orally bioavailable A1 agonist that lowers circulating FFA and TG levels by inhibiting lipolysis. CVT-3619 has antilipolytic effects at doses that do not elicit cardiovascular effects.  (+info)