(1/3669) Marker effects on reversion of T4rII mutants.

The frequencies of 2-aminopurine- and 5-bromouracil-induced A:T leads to G:C transitions were compared at nonsense sites throughout the rII region of bacteriophage T4. These frequencies are influenced both by adjacent base pairs within the nonsense codons and by extracodonic factors. Following 2AP treatment, they are high in amber (UAG) and lower in opal (UGA) codons than in allelic ochre (UAA) codons. In general, 5BU-induced transitions are more frequent in both amber and opal codons than in the allelic ochre codons. 2AP- and 5BU-induced transition frequencies in the first and third positions of opal codons are correlated with those in the corresponding positions of the allelic ochre codons. Similarly, the frequencies of 2AP-induced transition in the first and second positions of amber codons and their ochre alleles are correlated. However, there is little correlation between the frequencies of 5BU-induced transitions in the first and second positions of allelic amber and ochre codons.  (+info)

(2/3669) Cytokinin activation of Arabidopsis cell division through a D-type cyclin.

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  (+info)

(3/3669) Impact of 9-(2-phosphonylmethoxyethyl)adenine on (deoxy)ribonucleotide metabolism and nucleic acid synthesis in tumor cells.

Following exposure to 9-(2-phosphonylmethoxyethyl)adenine (an inhibitor of the cellular DNA polymerases alpha, delta and epsilon), human erythroleukemia K562, human T-lymphoid CEM and murine leukemia L1210 cells markedly accumulated in the S phase of the cell cycle. In contrast to DNA replication, RNA synthesis (transcription) and protein synthesis (mRNA translation) were not affected by 9-(2-phosphonylmethoxyethyl)-adenine. The ribonucleoside triphosphate pools were slightly elevated, while the intracellular levels of all four deoxyribonucleoside triphosphates were 1.5-4-fold increased in 9-(2-phosphonylmethoxyethyl)adenine-treated K562, CEM and L1210 cells. The effect of 9-(2-phosphonylmethoxyethyl)adenine on de novo (thymidylate synthase-mediated) and salvage (thymidine kinase-mediated) dTTP synthesis was investigated using radio-labelled nucleoside precursors. The amount of thymidylate synthase-derived dTTP in the acid soluble pool was 2-4-fold higher in PMEA-treated than in untreated K562 cells, which is in accord with the 3-4-fold expansion of the global dTTP level in the presence of 9-(2-phosphonylmethoxyethyl)adenine. Strikingly, 2-derived dTTP accumulated to a much higher extent (i.e. 16-40-fold) in the soluble dTTP pool upon 9-(2-phosphonylmethoxyethyl)adenine treatment. In keeping with this finding, a markedly increased thymidine kinase activity could be demonstrated in extracts of 9-(2-phosphonylmethoxyethyl)adenine-treated K562 cell cultures. Also, in the presence of 200 microM 9-(2-phosphonylmethoxyethyl)adenine, 14-fold less thymidylate synthase-derived but only 3-fold less thymidine kinase-derived dTTP was incorporated into the DNA of the K562 cells. These data show that thymidine incorporation may be inappropriate as a cell proliferation marker in the presence of DNA synthesis inhibitors such as 9-(2-phosphonylmethoxyethyl)adenine. Our findings indicate that 9-(2-phosphonylmethoxyethyl)adenine causes a peculiar pattern of (deoxy)ribonucleotide metabolism deregulation in drug-treated tumor cells, as a result of the metabolic block imposed by the drug on the S phase of the cell cycle.  (+info)

(4/3669) The major, N2-dG adduct of (+)-anti-B[a]PDE induces G-->A mutations in a 5'-AGA-3' sequence context.

Previously, in a random mutagenesis study, the (+)-anti diol epoxide of benzo[a]pyrene [(+)-anti-B[a]PDE] was shown to induce a complex mutational spectrum in the supF gene of an Escherichia coli plasmid, which included insertions, deletions and base substitution mutations, notably a significant fraction of GC-->TA, GC-->AT and GC-->CG mutations. At some sites, a single type of mutation dominated and to understand individual mutagenic pathways these sites were chosen for study by site-specific means to determine whether the major adduct, [+ta]-B[a]P-N2-dG, was responsible. [+ta]-B[a]P-N2-dG was shown to induce approximately 95% G-->T mutations in a 5'-TGC-3' sequence context and approximately 80% G-->A mutations in a 5'-CGT-3' sequence context. (+)-anti-B[a]PDE induced principally GC-->CG mutations in the G133 sequence context (5'-AGA-3') in studies using both SOS-uninduced or SOS-induced E. coli. Herein, [+ta]-B[a]P-N2-dG is shown to induce principally G-->A mutations (>90%) either without or with SOS induction in a closely related 5'-AGA-3' sequence context (identical over 7 bp). This is the first time that there has been a discrepancy between the mutagenic specificity of (+)-anti-B[a]PDE versus [+ta]-B[a]P-N2-dG. Eight explanations for this discordance are considered. Four are ruled out; e.g. the second most prevalent adduct [+ca]-B[a]P-N2-dG also induces a preponderance of G-->A mutations (>90%), so it also is not responsible for (+)-anti-B[a]PDE-induced G133-->C mutations. The four explanations not ruled out are discussed and include that another minor adduct might be responsible and that the 5'-AGA-3' sequence context differed slightly in the studies with [+ta]-B[a]P-N2-dG versus (+)-anti-B[a]PDE. In spite of the discordance, [+ta]-B[a]P-N2-dG induces G-->A mutations in the context studied herein and this result has proven useful in generating a hypothesis for what conformations of [+ta]-B[a]P-N2-dG are responsible for G-->T versus G-->A mutations.  (+info)

(5/3669) Hprt mutant frequency and molecular analysis of Hprt mutations in Fischer 344 rats treated with thiotepa.

Thiotepa is a bifunctional alkylating anticancer drug that is a rodent carcinogen and a suspected human carcinogen. In order to determine the sensitivity of mutant induction in the Hprt lymphocyte assay for detecting tumorigenic doses of thiotepa, Fischer 344 rats were treated for 4 weeks with thiotepa using a procedure adapted from a carcinogenesis protocol. At various times after beginning the treatment regimen, rats were killed and the lymphocyte Hprt assay was performed on splenic lymphocytes isolated from the animals. The 6-thioguanine-resistant T lymphocyte mutant frequency increased with time during the period of thiotepa exposure and declined slightly thereafter. Significant dose-dependent increases in mutant frequency were found using concentrations of thiotepa that eventually result in lymphoproliferative tumors. Hprt mRNA from mutant lymphocytes was reverse transcribed to cDNA, amplified by PCR and examined for mutations by DNA sequencing. This analysis indicated that the major type of point mutation was G:C-->T:A transversion and that 33% of the mutants contained simple or complex frameshifts. Also, a multiplex PCR performed on DNA from mutant clones that were expanded in vitro indicated that 34% of the clones had deletions in the Hprt gene. These results indicate that the induction of lymphocyte Hprt mutants is a sensitive biomarker for the carcinogenicity of thiotepa and that the types of mutations found in the lymphocyte Hprt gene reflect the kinds of DNA damage produced by thiotepa.  (+info)

(6/3669) In vitro reactions of butadiene monoxide with single- and double-stranded DNA: characterization and quantitation of several purine and pyrimidine adducts.

We have previously shown that butadiene monoxide (BM), the primary metabolite of 1,3-butadiene, reacted with nucleosides to form alkylation products that exhibited different rates of formation and different stabilities under in vitro physiological conditions. In the present study, BM was reacted with single-stranded (ss) and double-stranded (ds) calf thymus DNA and the alkylation products were characterized after enzymatic hydrolysis of the DNA. The primary products were regioisomeric N-7-guanine adducts. N-3-(2-hydroxy-3-buten-1-yl)adenine and N-3-(1-hydroxy-3-buten-2-yl)adenine, which were depurinated from the DNA more rapidly than the N-7-guanine adducts, were also formed. In addition, N6-(2-hydroxy-3-buten-1-yl)deoxyadenosine and N6-(1-hydroxy-3-buten-2-yl)deoxyadenosine were detected and evidence was obtained that these adducts were formed by Dimroth rearrangement of the corresponding N-1-deoxyadenosine adducts, not while in the DNA, but following the release of the N-1-alkylated nucleosides by enzymatic hydrolysis. N-3-(2-hydroxy-3-buten-1-yl)deoxyuridine adducts, which were apparently formed subsequent to deamination reactions of the corresponding deoxycytidine adducts, were also detected and were stable in the DNA. Adduct formation was linearly dependent upon BM concentration (10-1000 mM), with adduct ratios being similar at the various BM concentrations. At a high BM concentration (750 mM), the adducts were formed in a linear fashion for up to 8 h in both ssDNA and dsDNA. However, the rates of formation of the N-3-deoxyuridine and N6-deoxyadenosine adducts increased 10- to 20-fold in ssDNA versus dsDNA, whereas the N-7-guanine adducts increased only slightly, presumably due to differences in hydrogen bonding in ssDNA versus dsDNA. These results may contribute to a better understanding of the molecular mechanisms of mutagenesis and carcinogenesis of both BM and its parent compound, 1,3-butadiene.  (+info)

(7/3669) Early short-term 9-[2-(R)-(phosphonomethoxy)propyl]adenine treatment favorably alters the subsequent disease course in simian immunodeficiency virus-infected newborn Rhesus macaques.

Simian immunodeficiency virus (SIV) infection of newborn macaques is a useful animal model of human pediatric AIDS to study disease pathogenesis and to develop intervention strategies aimed at delaying disease. In the present study, we demonstrate that very early events of infection greatly determine the ultimate disease course, as short-term antiviral drug administration during the initial viremia stage significantly delayed the onset of AIDS. Fourteen newborn macaques were inoculated orally with uncloned, highly virulent SIVmac251. The four untreated control animals showed persistently high virus levels and poor antiviral immune responses; they developed fatal immunodeficiency within 15 weeks. In contrast, SIV-infected newborn macaques which were started on 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA) treatment at 5 days of age and continued for either 14 or 60 days showed reduced virus levels and enhanced antiviral immune responses. This short-term PMPA treatment did not induce detectable emergence of SIV mutants with reduced in vitro susceptibility to PMPA. Although viremia increased in most animals after PMPA treatment was withdrawn, all animals remained disease-free for at least 6 months. Our data suggest that short-term treatment with a potent antiviral drug regimen during the initial viremia will significantly prolong AIDS-free survival for HIV-infected infants and adults.  (+info)

(8/3669) Enzyme-mononucleotide interactions: three different folds share common structural elements for ATP recognition.

Three ATP-dependent enzymes with different folds, cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha2beta2 ribonucleotide reductase, have a similar organization of their ATP-binding sites. The most meaningful similarity was found over 23 structurally equivalent residues in each protein and includes three strands each from their beta-sheets, in addition to a connecting loop. The equivalent secondary structure elements in each of these enzymes donate four amino acids forming key hydrogen bonds responsible for the common orientation of the "AMP" moieties of their ATP-ligands. One lysine residue conserved throughout the three families binds the alpha-phosphate in each protein. The common fragments of structure also position some, but not all, of the equivalent residues involved in hydrophobic contacts with the adenine ring. These examples of convergent evolution reinforce the view that different proteins can fold in different ways to produce similar structures locally, and nature can take advantage of these features when structure and function demand it, as shown here for the common mode of ATP-binding by three unrelated proteins.  (+info)