Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. (73/2017)

By Alu-splice PCR we have trapped two exons and subsequently identified the full length cDNA of a human gene, Intersectin (ITSN), which maps to chromosome 21q22.1 between markers D21S320 and D21S325. The gene has the potential to code for at least two different protein isoforms by alternative splicing (ITSN-L and ITSN-S). Intersectin exists with a high degree of similarity in flies, frogs and mammals, suggesting a conserved role in higher eukaryotes. Analysis of the expression pattern of human and mouse Intersectin detected mRNAs in all adult and foetal tissues tested, with the longer isoform present in brain. In situ hybridisation studies in the developing mouse brain showed ITSN expression in both proliferating and differentiating neurons. The genomic structure of ITSN was determined using the chromosome 21 sequences deposited in the public databases. The protein contains several known motifs which implicate ITSN in clathrin mediated endocytosis and synaptic vesicle recycling. The expression pattern of Intersectin in mouse brain, its presumed function and its overexpression in brains from Down syndrome patients, suggest that Intersectin may contribute in a gene dosage-dependent manner to some of the abnormalities of Down syndrome.  (+info)

Two distinct mutations of the RET receptor causing Hirschsprung's disease impair the binding of signalling effectors to a multifunctional docking site. (74/2017)

The RET gene codes for a transmembrane tyrosine kinase which is a subunit of a multimeric complex that acts as a receptor for four structurally related molecules: the glial cell line-derived neurotrophic factor (GDNF), neurturin, artemin and persephin. Germline mutations of RET cause a dominantly inherited dysgenesis of the enteric nervous system known as Hirschsprung's disease (HSCR; aganglionosis megacolon). The majority of HSCR mutations results either in a reduction of dosage of the RET protein or in the loss of RET function. Two novel distinct mutations of RET that led either to the deletion of codon 1059 (denoted Delta1059) or to the substitution of a Pro for Leu1061 have been identified in five HSCR families. In one large pedigree, two children born from asymptomatic consanguineous parents presented a severe form of HSCR and were found to carry the mutation at codon 1061 in the homozygous state. A tyrosine residue at position 1062 is an intracytoplasmic docking site that enables RET to recruit several signalling molecules, including the Shc adaptor protein. We now report that both HSCR mutations impair the fixation of Shc to RET and consequently prevent its phosphorylation. In addition, quantitative analysis in PC12 cells reveals that mutation Delta1059 inactivates the ability of RET to transduce a downstream signal whereas mutation L1061P only partially inhibits the signalling of RET. Finally, we provide evidence that these effects are partly mediated via the disruption of the RET/Shc interaction. Collectively, these results demonstrate that HSCR can be ascribed to mutations of RET which interfere with the binding of transduction effectors, such as Shc, and further provide a biochemical explanation for the phenotype of patients carrying a homozygous mutation at codon 1061. Finally, these data indicate that Y1062 is a multifunctional docking site that confers to RET the capacity to engage downstream signalling pathways which exert a crucial role during enteric neurogenesis.  (+info)

Cas mediates transcriptional activation of the serum response element by Src. (75/2017)

The Src substrate p130(Cas) is a docking protein containing an SH3 domain, a substrate domain that contains multiple consensus SH2 binding sites, and a Src binding region. We have examined the possibility that Cas plays a role in the transcriptional activation of immediate early genes (IEGs) by v-Src. Transcriptional activation of IEGs by v-Src occurs through distinct transcriptional control elements such as the serum response element (SRE). An SRE transcriptional reporter was used to study the ability of Cas to mediate Src-induced SRE activation. Coexpression of v-Src and Cas led to a threefold increase in SRE-dependent transcription over the level induced by v-Src alone. Cas-dependent activation of the SRE was dependent on the kinase activity of v-Src and the Src binding region of Cas. Signaling to the SRE is promoted by a serine-rich region within Cas and inhibited by the Cas SH3 domain. Cas-dependent SRE activation was accompanied by an increase in the level of active Ras and in the activity of the mitogen-activated protein kinase (MAPK) Erk2; these changes were blocked by coexpression of dominant-negative mutants of the adapter protein Grb2. SRE activation was abrogated by coexpression of dominant-negative mutants of Ras, MAPK kinase (Mek1), and Grb2. Coexpression of Cas with v-Src enhanced the association of Grb2 with the adapter protein Shc and the protein tyrosine phosphatase Shp-2; coexpression of Shc or Shp-2 mutants significantly reduced SRE activation by Cas and v-Src. Cas-induced Grb2 association with Shp-2 and Shc may account for the Cas-dependent activation of the Ras/Mek/Erk pathway and SRE-dependent transcription. 14-3-3 proteins may also play a role in Cas-mediated signaling to the SRE. Overexpression of Cas was found to modestly enhance epidermal growth factor (EGF)-induced activation of the SRE. A Cas mutant lacking the Src binding region did not potentiate the EGF response, suggesting that Cas enhances EGF signaling by binding to endogenous cellular Src or another Src family member. These observations implicate Cas as a mediator of Src-induced transcriptional activation.  (+info)

The Glu632-Leu633 deletion in cysteine rich domain of Ret induces constitutive dimerization and alters the processing of the receptor protein. (76/2017)

Mutations of the RET gene, encoding a receptor tyrosine kinase, have been associated with the inherited cancer syndromes MEN 2A and MEN 2B. They have also further been associated with both familial and sporadic medullary thyroid carcinomas. Missense mutations affecting cysteine residues within the extracellular domain of the receptor causes constitutive tyrosine kinase activation through the formation of disulfide-bonded homodimers. We have recently reported that a somatic 6 bp in-frame deletion, originally coding for Glu632-Leu633, potently activates the RET gene. This activation is increased with respect to the frequent MEN 2A-associated missense mutation Cys634Arg. This finding specifically correlated to the clinic behavior of the corresponding tumor, which was characterized by an unusually aggressive progression with both multiple and recurrent metastases. By examining the possibility that this deletion acts in a manner similar to cysteine substitution, we have analysed the molecular mechanism by which this oncogenic activation occurs. Phosphorylated dimers of the deleted Ret receptor were detected in immunoprecipitates separated under non-reducing conditions. Like other Cys point mutations, this 6 bp deletion affecting two amino acid residues between two adjacent Cys, is capable of activating the transforming ability of Ret by promoting receptor dimerization. These results suggest that alteration to cysteine residue position or pairing is capable of inducing ligand independent dimerization. Furthermore, we present data demonstrating that the processing and sorting of the Ret membrane receptor to the cell surface is affected by mutation type.  (+info)

The range of spalt-activating Dpp signalling is reduced in endocytosis-defective Drosophila wing discs. (77/2017)

Pattern formation along the anterior-posterior (A/P) axis of the developing Drosophila wing depends on Decapentaplegic (Dpp), a member of the conserved transforming growth factor beta (TGFbeta) family of secreted proteins. Dpp is expressed in a stripe along the A/P compartment boundary of the wing imaginal disc and forms a long-range concentration gradient with morphogen-like properties which generates distinct cell fates along the A/P axis. We have monitored Dpp expression and Dpp signalling in endocytosis-mutant wing imaginal discs which develop severe pattern defects specifically along the A/P wing axis. The results show that the size of the Dpp expression domain is expanded in endocytosis-mutant wing discs. However, this expansion did not result in a concomitant expansion of the functional range of Dpp activity but rather its reduction as indicated by the reduced expression domain of the Dpp target gene spalt. The data suggest that clathrin-mediated endocytosis, a cellular process necessary for membrane recycling and vesicular trafficking, participates in Dpp action during wing development. Genetic interaction studies suggest a link between the Dpp receptors and clathrin. Impaired endocytosis does not interfere with the reception of the Dpp signal or the intracellular processing of the mediation of the signal in the responder cells, but rather affects the secretion and/or the distribution of Dpp in the developing wing cells.  (+info)

The Drosophila GMII gene encodes a Golgi alpha-mannosidase II. (78/2017)

In this paper we show the organisation of the Drosophila gene encoding a Golgi alpha-mannosidase II. We demonstrate that it encodes a functional homologue of the mouse Golgi alpha-mannosidase II. The Drosophila and mouse cDNA sequences translate into amino acid sequences which show 41% identity and 61% similarity. Expression of the Drosophila GMII sequence in CHOP cells produces an enzyme which has mannosidase activity and is inhibited by swainsonine and by CuSO(4.) In cultured Drosophila cells and in Drosophila embryos, antibodies raised against a C-terminal peptide localise this product mainly to the Golgi apparatus as identified by cryo-immuno electron microscopy studies and by antibodies raised against known mammalian Golgi proteins. We discuss these results in terms of the possible use of dGMII as a Drosophila Golgi marker.  (+info)

Formation of complexes involving RasGAP and p190 RhoGAP during morphogenetic events of the gastrulation in xenopus. (79/2017)

In relation to the activation of the Src-family of tyrosine kinases during early morphogenetic events of gastrulation in Xenopus, we have identified two multiprotein complexes. The first complex, including RasGAP, p190 RhoGAP and p62, was previously characterized in murine fibroblasts overexpressing c-Src or transformed by v-Src and has been correlated with cytoskeleton remodelling. A second complex, not identified in other models includes tyrosine-phosphorylated p66SHC, Grb2, RasGAP and p190 RhoGAP. The association with p66SHC, considered as a negative regulator of ERK (extracellular signal-regulated kinase), p120RasGAP and p190RhoGAP, suggests a possible mechanism for coupling Ras and Rho signalling pathways. The interaction of RasGAP and p190 RhoGAP in two multiprotein complexes could constitute an additional level of Rho regulation during morphogenetic events of gastrulation.  (+info)

Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. (80/2017)

Dok (for downstream of tyrosine kinases) proteins are a newly identified family of docking molecules that are characterized by the presence of an amino-terminal pleckstrin homology (PH) domain, a central putative phosphotyrosine-binding (PTB) domain and numerous potential sites of tyrosine phosphorylation [1] [2] [3] [4] [5] [6]. Here, we explore the potential role of the Dok family member Dok-R (also known as p56(Dok2) or FRIP) in signaling pathways mediated by the epidermal growth factor (EGF) receptor. An intact PTB domain in Dok-R was critical for its association with two PTB-binding consensus sites on the EGF receptor and the PH domain further contributed to stable in vivo binding and tyrosine phosphorylation of Dok-R. Multiple sites on Dok-R were tyrosine-phosphorylated following EGF stimulation; phosphorylated Tyr276 and Tyr304 are proposed to dock the tandem Src homology 2 (SH2) domains of the p21(Ras) GTPase-activating protein rasGAP and Tyr351 mediates an association with the SH2 domain of the adapter protein Nck. Interestingly, we have found that Dok-R could attenuate EGF-stimulated mitogen-activated protein (MAP) kinase activation independently of its association with rasGAP. Together, these results suggest that Dok-R has an important role downstream of growth factor receptors as a potential negative regulator of signal transduction.  (+info)