Distinct and redundant functions of mu1 medium chains of the AP-1 clathrin-associated protein complex in the nematode Caenorhabditis elegans. (1/17)

In the nematode Caenorhabditis elegans, there exist two micro1 medium chains of the AP-1 clathrin-associated protein complex. Mutations of unc-101, the gene that encodes one of the micro1 chains, cause pleiotropic effects (). In this report, we identified and analyzed the second mu1 chain gene, apm-1. Unlike the mammalian homologs, the two medium chains are expressed ubiquitously throughout development. RNA interference (RNAi) experiments with apm-1 showed that apm-1 and unc-101 were redundant in embryogenesis and in vulval development. Consistent with this, a hybrid protein containing APM-1, when overexpressed, rescued the phenotype of an unc-101 mutant. However, single disruptions of apm-1 or unc-101 have distinct phenotypes, indicating that the two medium chains may have distinct functions. RNAi of any one of the small or large chains of AP-1 complex (sigma1, beta1, or gamma) showed a phenotype identical to that caused by the simultaneous disruption of unc-101 and apm-1, but not that by single disruption of either gene. This suggests that the two medium chains may share large and small chains in the AP-1 complexes. Thus, apm-1 and unc-101 encode two highly related micro1 chains that share redundant and distinct functions within AP-1 clathrin-associated protein complexes of the same tissue.  (+info)

Sigma 1- and mu 1-Adaptin homologues of Leishmania mexicana are required for parasite survival in the infected host. (2/17)

The sorting of membrane-bound proteins from the trans-Golgi network to lysosomal/endosomal compartments is achieved by preferential inclusion into clathrin-coated vesicles. Contained within the cytoplasmic domains of such proteins, specific sequence motifs have been identified (tyrosine-based and/or di-leucine-based) that are essential for targeting and are recognized by a family of heterotetrameric adaptor complexes, which then recruit clathrin. These cytosolic protein complexes, which have been found in a wide variety of higher eukaryotic organisms, are essential for the development of multicellular organisms. In trypanosomatids, the adaptin-mediated sorting of proteins is largely uncharacterized. In order to identify components of the adaptor-complex machinery, this study reports the cloning and characterization of sigma 1- and mu 1-adaptin gene homologues from the eukaryotic protozoan parasite, Leishmania mexicana. Generation of sigma 1- and mu 1-adaptin gene deletion mutants shows that these promastigote parasites are viable in culture, but are unable to establish infection of macrophages or mice, indicating that adaptin function is crucial for pathogenesis in these unicellular organisms.  (+info)

The AP-3 clathrin-associated complex is essential for embryonic and larval development in Caenorhabditis elegans. (3/17)

The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the m3, s3, b3 and d genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans m3, s3, b3 and d genes are essential for embryogenesis and larval development.  (+info)

Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. (4/17)

In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.  (+info)

Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. (5/17)

Fried syndrome, first described in 1972, is a rare X-linked mental retardation that has been mapped by linkage to Xp22. Clinical characteristics include mental retardation, mild facial dysmorphism, calcifications of basal ganglia and hydrocephalus. A large four-generation family in which the affected males have striking clinical features of Fried syndrome were investigated for linkage to X-chromosome markers; the results showed that the gene for this condition lies within the interval DXS7109-DXS7593 in Xp22.2. In total, 60 candidate genes located in this region, including AP1S2, which was recently shown to be involved in mental retardation, were screened for mutations. A mutation in the third intron of AP1S2 was found in all affected male subjects in this large French family. The mutation resulted in skipping of exon 3, predicting a protein with three novel amino-acids and with termination at codon 64. In addition, the first known large Scottish family affected by Fried syndrome was reinvestigated, and a new nonsense mutation, p.Gln66X, was found in exon 3. Using CT, both affected patients from the French family who were analysed had marked calcifications of the basal ganglia, as previously observed in the first Scottish family, suggesting that the presence of distinctive basal ganglia calcification is an essential parameter to recognise this syndromic disorder. It may be possible to use this feature to identify families with X-linked mental retardation that should be screened for mutations in AP1S2.  (+info)

Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. (6/17)


AP17 and AP19, the mammalian small chains of the clathrin-associated protein complexes show homology to Yap17p, their putative homolog in yeast. (7/17)

AP17 and AP19 are the smallest polypeptide chain components of AP-2 and AP-1, the clathrin-associated protein complexes found in coated structures of the plasma membrane and Golgi apparatus of mammalian cells. cDNA clones representing the entire coding sequence of AP17 and AP19 were isolated from rat and mouse brain cDNA libraries, respectively. Determination of their nucleotide sequence predicts proteins of 142 and 158 amino acids with Mr 17,018 and 18,733. A sequence comparison of rat brain AP17 with mouse brain AP19 demonstrates that the small chains are highly related. A computer search for other related proteins has uncovered in yeast a previously unknown gene whose DNA sequence encodes a protein homologous to the small chain of AP complexes. The yeast sequence predicts Yap17p, a protein with 147 amino acids and a Mr of 17,373 that is slightly more related to the mammalian AP17 chain than to its AP19 counterpart.  (+info)

Local clustering of transferrin receptors promotes clathrin-coated pit initiation. (8/17)