Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. (41/92)

Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.  (+info)

Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. (42/92)

Assembly of E-cadherin-based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIgamma also interacts with the mu subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIgamma or disruption of PIPKIgamma binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIgamma binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIgamma serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.  (+info)

Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. (43/92)

alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors undergo constitutive and ligand-induced internalization that requires dynamin and the clathrin adaptor complex AP-2. We report here that an atypical basic motif within the cytoplasmic tails of AMPA-type glutamate receptors directly associates with mu2-adaptin by a mechanism similar to the recognition of the presynaptic vesicle protein synaptotagmin 1 by AP-2. A synaptotagmin 1-derived AP-2 binding peptide competes the interaction of the AMPA receptor subunit GluR2 with AP-2mu and increases the number of surface active glutamate receptors in living neurons. Moreover, fusion of the GluR2-derived tail peptide with a synaptotagmin 1 truncation mutant restores clathrin/AP-2-dependent internalization of the chimeric reporter protein. These data suggest that common mechanisms regulate AP-2-dependent internalization of pre- and postsynaptic membrane proteins.  (+info)

Synaptotagmin I binds intestinal epithelial NHE3 and mediates cAMP- and Ca2+-induced endocytosis by recruitment of AP2 and clathrin. (44/92)

Apical membrane sodium hydrogen exchanger 3 (NHE3), a major pathway for non-nutrient-dependent intestinal Na(+) absorption, is tightly regulated by second messenger systems that affect its functional activity and membrane trafficking. However, the events and components involved in NHE3 regulation are only partially understood. We report that the adaptor protein synaptotagmin I (Syt I) plays a pivotal role in cAMP- and Ca(2+)-induced cargo recognition of NHE3 and initiation of its endocytosis. Both mouse small intestine (jejunum) and Caco-2BBe Syt I coimmunoprecipitated with NHE3, particularly following increases in cellular cAMP or Ca(2+). Following short interfering RNA (siRNA) suppression of Syt I expression, cAMP- and Ca(2+)-induced inhibition of NHE3 activity were still observed but NHE3 endocytosis was blocked, as assessed by (22)Na influx and apical membrane biotin labeling, respectively. Similar effects on NHE3 inhibition and endocytosis were observed by siRNA suppression of either the mu-subunit of the adaptor protein 2 (AP2) complex or the heavy chain of clathrin. Coimmunoprecipitation analyses of NHE3 with these adaptor proteins revealed that cAMP- and Ca(2+)-induced NHE3-Syt I interaction preceded and was required for recruitment of AP2 and the clathrin complex. Confocal microscopy confirmed both the time sequence and protein associations of these events. We conclude that Syt I plays a pivotal role in mediating cAMP- and Ca(2+)-induced endocytosis of NHE3 (but not in inhibition of activity) through cargo recognition of NHE3 and subsequent recruitment of AP2-clathrin assembly required for membrane endocytosis.  (+info)

N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins. (45/92)

The highly homologous beta-arrestin1 and -2 adaptor proteins play important roles in the function of G protein-coupled receptors. Either beta-arrestin variant can function as a molecular chaperone for clathrin-mediated receptor internalization. This role depends primarily upon two distinct, contiguous C-terminal beta-arrestin motifs recognizing clathrin and the beta-adaptin subunit of AP2. However, a molecular basis is lacking to explain the different endocytic efficacies of the two beta-arrestin isoforms and the observation that beta-arrestin N-terminal substitution mutants can act as dominant negative inhibitors of receptor endocytosis. Despite the near identity of the beta-arrestins throughout their N termini, sequence variability is present at a small number of residues and includes tyrosine to phenylalanine substitutions. Here we show that corresponding N-terminal (Y/F)VTL sequences in beta-arrestin1 and -2 differentially regulate mu-adaptin binding. Our results indicate that the beta-arrestin1 Tyr-54 lessens the interaction with mu-adaptin and moreover is a Src phosphorylation site. A gain of endocytic function is obtained with the beta-arrestin1 Y54F substitution, which improves both the beta-arrestin1 interaction with mu-adaptin and the ability to enhance beta2-adrenergic receptor internalization. These data indicate that beta-arrestin2 utilizes mu-adaptin as an endocytic partner, and that the inability of beta-arrestin1 to sustain a similar degree of interaction with mu-adaptin may result from coordination of Tyr-54 by neighboring residues or its modification by Src kinase. Additionally, these naturally occurring variations in beta-arrestins may also differentially regulate the composition of the signaling complexes organized on the receptor.  (+info)

Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. (46/92)

The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.  (+info)

The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. (47/92)

Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.  (+info)

The medium chains of the mammalian clathrin-associated proteins have a homolog in yeast. (48/92)

We have cloned and sequenced mouse brain AP47, the medium chain of the trans-Golgi network clathrin-associated protein complex AP-1. The predicted protein sequence of AP47 is closely related to rat and calf brain AP50, the corresponding medium chain of the plasma-membrane clathrin-associated protein complex AP-2. We have also identified in the yeast genome an open reading frame encoding a protein of previously unknown function. Referred to here as YAP54, its predicted protein sequence displays a striking homology to AP47. We therefore propose that Yap54 is the medium chain subunit of a putative AP-1 complex in yeast. From the analyses of the optimized sequence alignments of AP47, AP50 and Yap54p, we suggest a model for the domain organization of the medium chains.  (+info)