Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). (33/1953)

Tumour necrosis factor alpha convertase (TACE) is a metalloprotease/disintegrin involved in the ectodomain shedding of several proteins, a process thought to be important in inflammation, rheumatoid arthritis and murine development. The characterization of the intracellular maturation and subcellular localization of endogenous TACE is decribed in the present study. Similarly to other proteolytically active metalloprotease/disintegrins, two forms of TACE are found in cells; a full-length precursor and a mature form lacking the prodomain. Prodomain removal occurs in a late Golgi compartment, consistent with the proposed role of a furin type proprotein convertase in this process. An additional form of TACE, lacking the pro and cytoplasmic domains, is detected when cell lysates are prepared in the presence of EDTA instead of a hydroxamate-based metalloprotease inhibitor or 1,10-phenanthroline. This form appears to be generated by mature TACE cleaving its own cytoplasmic tail and may explain why little mature TACE has been detected in previous studies. In cell-surface labelling experiments, mature TACE was detected on the cell surface but immunofluorescence data indicate that TACE is predominantly localized to a perinuclear compartment similar to that described for tumour necrosis factor (TNF)alpha. This raises the possibility that TACE-mediated ectodomain shedding may occur in an intracellular compartment in addition to the cell surface.  (+info)

Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. (34/1953)

HER4 is a member of the epidermal growth factor receptor family and has an essential function in heart and neural development. Identification of two HER4 isoforms, HER4 JM-a and JM-b, which differ in their extracellular juxtamembrane region and in their susceptibility to cleavage after phorbol ester stimulation, showed that the juxtamembrane region of the receptor is critical for proteolysis. We now demonstrate that phorbol ester and pervanadate are effective stimuli for HER4 JM-a processing and that the HER4 JM-b isoform does not undergo cleavage in response to any of the stimuli studied. We also show that HER4 JM-a is not cleaved in cells lacking the metalloprotease tumor necrosis factor-alpha-converting enzyme (TACE) and that reexpression of TACE in these cells restores constitutive and regulated processing of HER4 JM-a. Moreover, we show that the sequence specific to the HER4 JM-a juxtamembrane region is sufficient to confer susceptibility to phorbol 12-myristate 13-acetate-induced cleavage of the HER2 receptor. In conclusion, we provide evidence that TACE is essential for the regulated shedding of the HER4 JM-a receptor.  (+info)

Activation of tumor necrosis factor-alpha-converting enzyme-mediated ectodomain shedding by nitric oxide. (35/1953)

Ectodomain shedding of cell surface proteins is an important process in a wide variety of physiological and developmental events. Recently, tumor necrosis factor-alpha-converting enzyme (TACE) has been found to play an essential role in the shedding of several critical surface proteins, which is evidenced by multiple developmental defects exhibited by TACE knockout mice. However, little is known about the physiological activation of TACE. Here, we show that nitric oxide (NO) activates TACE-mediated ectodomain shedding. Using an in vitro model of TACE activation, we show that NO activates TACE by nitrosation of the inhibitory motif of the TACE prodomain. Thus, NO production activates the release of cytokines, cytokine receptors, and adhesion molecules, and NO may be involved in other ectodomain shedding processes.  (+info)

ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. (36/1953)

ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  (+info)

Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). (37/1953)

Aggrecan, the major proteoglycan of cartilage that provides its mechanical properties of compressibility and elasticity, is one of the first matrix components to undergo measurable loss in arthritic diseases. Two major sites of proteolytic cleavage have been identified within the interglobular domain (IGD) of the aggrecan core protein, one between amino acids Asn(341)-Phe(342) which is cleaved by matrix metalloproteinases and the other between Glu(373)-Ala(374) that is attributed to aggrecanase. Although several potential aggrecanase-sensitive sites had been identified within the COOH terminus of aggrecan, demonstration that aggrecanase cleaved at these sites awaited isolation and purification of this protease. We have recently cloned human aggrecanase-1 (ADAMTS-4) (Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Arner, E. C. (1999) Science 284, 1664-1666) and herein demonstrate that in addition to cleavage at the Glu(373)-Ala(374) bond, this protease cleaves at four sites within the chondroitin-sulfate rich region of the aggrecan core protein, between G2 and G3 globular domains. Importantly, we show that this cleavage occurs more efficiently than cleavage within the IGD at the Glu(373)-Ala(374) bond. Cleavage occurred preferentially at the KEEE(1667-1668)GLGS bond to produce both a 140-kDa COOH-terminal fragment and a 375-kDa fragment that retains an intact G1. Cleavage also occurred at the GELE(1480-1481)GRGT bond to produce a 55-kDa COOH-terminal fragment and a G1-containing fragment of 320 kDa. Cleavage of this 320-kDa fragment within the IGD at the Glu(373)-Ala(374) bond then occurred to release the 250-kDa BC-3-reactive fragment from the G1 domain. The 140-kDa GLGS-reactive fragment resulting from the preferential cleavage was further processed at two additional cleavage sites, at TAQE(1771)-(1772)AGEG and at VSQE(1871-1872)LGQR resulting in the formation of a 98-kDa fragment with an intact G3 domain and two small fragments of approximately 20 kDa. These data elucidate the sites and efficiency of cleavage during aggrecan degradation by aggrecanase and suggest potential tools for monitoring aggrecan cleavage in arthritis.  (+info)

Identification, cellular distribution and potential function of the metalloprotease-disintegrin MDC9 in the kidney. (38/1953)

The complex interactions of glomerular and tubular epithelial cells with the basal laminae play a critical role in renal function. Disruption of these interactions has been widely implicated in glomerular diseases and acute renal failure. MDC are a large family of membrane-bound proteins containing metalloprotease, disintegrin (integrin interaction sites), and cysteine-rich domains. Little information is available concerning the presence of MDC in the kidney or their role in renal pathophysiology. Using degenerate PCR primers for the conserved metalloprotease and disintegrin domains of this protein family, cDNA templates from tubules, whole glomeruli, and glomerular epithelial cells (GEC) yielded a single, 195-bp product, which on sequence analysis corresponded to a region in the disintegrin domain of MDC9. Northern analysis of poly(A)+ RNA from tubules, whole glomeruli, and GEC revealed a 3.9-kb transcript, identical to that of mouse MDC9. Using antibodies generated against a 21-amino acid peptide present in the metalloprotease domain of MDC9, Western analysis of concanavalin A-enriched glomerular microsomal extracts demonstrated both processed (76 kD) and unprocessed (116 kD) forms of MDC9, which upon reduction changed to the corresponding 84- and 124-kD forms. Histochemical studies revealed a basolateral localization of intrinsic MDC9 protein in renal cortical tubule cells and glomerular visceral epithelial cells, which colocalized with the beta1 integrin chain. Expression of green fluorescence protein MDC9 chimeric constructs in GEC or polarized Madin-Darby canine kidney epithelial cells revealed a similar punctate basolateral surface localization. Transient overexpression of the soluble disintegrin domain-green fluorescence protein chimera in GEC led to dramatic changes in cellular morphology with rounding and detachment from cell monolayers. These studies document the presence of MDC9 in renal epithelial cells and suggest an important role for MDC9 in renal epithelial cellular interactions with the basal lamina and adjoining cells.  (+info)

Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. (39/1953)

Little is yet known about the biological and biochemical properties of the disintegrin-like domains of ADAM (a disintegrin and metalloprotease) proteins. Mouse ADAM 2 (mADAM 2; fertilin beta) is a sperm surface protein involved in murine fertilization. We produced recombinant proteins containing the disintegrin-like domain of mADAM 2 in both insect cells and in bacteria. The protein produced in insect cells (baculo D+C) contained a signal sequence followed by the disintegrin-like and cysteine-rich domains; it was purified from the medium of recombinant baculovirus-infected cells. A bacterial construct containing the disintegrin-like domain was produced in Escherichia coli as a glutathione S-transferase chimera. Baculo D+C, as well as the D domain of the bacterial construct (released with thrombin), bound to the microvillar surface of murine eggs. Using concentrations in the range of 1 to 5 microM, both recombinant proteins strongly inhibited sperm-egg binding and fusion; the baculovirus-produced protein exhibited a somewhat greater extent of inhibition (approximately 75 versus approximately 55% maximal inhibition). Substitution of alanine for each of the five charged residues within the disintegrin loop of mADAM 2 revealed a critical importance for the aspartic acid at position nine. Binding of both recombinant proteins to the egg was inhibited by the function blocking anti-alpha(6) monoclonal antibody, GoH3, but not by a nonfunction-blocking anti-alpha(6) monoclonal antibody. Binding was also inhibited by a peptide analogue of, and with an antibody against, the disintegrin loop of mADAM 2.  (+info)

Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. (40/1953)

Ovulation is a precisely timed process by which a mature oocyte is released from an ovarian follicle. This process is initiated by the pituitary surge of luteinizing hormone (LH), is temporally associated with transcriptional regulation of numerous genes, and is presumed to involve the synthesis and/or activation of specific proteases that degrade the follicle wall. The progesterone receptor (PR), a nuclear receptor transcription factor, is induced in granulosa cells of preovulatory follicles in response to the LH surge and has been shown to be essential for ovulation, because mice lacking PR fail to ovulate and are infertile. Using these mice as a model in which to elucidate PR-regulated genes in the ovulation process, we show that the matrix metalloproteinases MMP-2 and MMP-9 are not targets of PR during ovulation. In contrast, two other proteases, ADAMTS-1 (A disintegrin and metalloproteinase with thrombospondin-like motifs) and cathepsin L (a lysosomal cysteine protease), are transcriptional targets of PR action. ADAMTS-1 is induced after LH stimulation in granulosa cells of preovulatory follicles and depends on PR. Cathepsin L is induced in granulosa cells of growing follicles by follicle-stimulating hormone, but the highest levels of cathepsin L mRNA occur in preovulatory follicles in response to LH in a PR-dependent manner. The identification of two regulated proteases in the ovary, together with their abnormal expression in anovulatory PR knockout mice, suggests that each plays a critical role in follicular rupture and represents a major advance in our understanding of the proteolytic events that control ovulation.  (+info)