Studies on the metabolic fate of n-3 polyunsaturated fatty acids. (57/269)

Several different processes involved in the metabolic fate of docosahexaenoic acid (DHA, C22:6n-3) and its precursor in the biosynthesis route, C24:6n-3, were studied. In cultured skin fibroblasts, the oxidation rate of [1-14C] 24:6n-3 was 2.7 times higher than for [1-14C]22:6n-3, whereas [1-14C]22:6n-3 was incorporated 7 times faster into different lipid classes than was [1-14C]24:6n-3. When determining the peroxisomal acyl-CoA oxidase activity, similar specific activities for C22:6(n-3)-CoA and C24:6(n-3)-CoA were found in mouse kidney peroxisomes. Thioesterase activity was measured for both substrates in mouse kidney peroxisomes as well as mitochondria, and C22:6(n-3)-CoA was hydrolyzed 1.7 times faster than C24:6(n-3)-CoA. These results imply that the preferred metabolic fate of C24:6(n-3)-CoA, after its synthesis in the endoplasmic reticulum (ER), is to move to the peroxisome, where it is beta-oxidized, producing C22:6(n-3)-CoA. This DHA-CoA then preferentially moves back, probably as free fatty acid, to the ER, where it is incorporated into membrane lipids.  (+info)

Down-regulation of acyl-CoA oxidase gene expression in heart of troglitazone-treated mice through a mechanism involving chicken ovalbumin upstream promoter transcription factor II. (58/269)

Cardiac expression of genes involved in fatty acid metabolism may suffer alterations depending on the substrate availability. We studied how troglitazone, an antidiabetic drug that selectively activates peroxisome proliferator-activated receptor gamma (PPARgamma), affected the expression of several of these genes. A single-day troglitazone administration (100 mg/kg/day) did not significantly alter plasma free fatty acids or triglyceride levels. In contrast, a 10-day period of troglitazone treatment significantly reduced plasma free fatty acids and triglyceride levels by 74% (P < 0.001) and 56% (P < 0.01), respectively. Cardiac mRNA expression of acyl-CoA oxidase (ACO) increased (8.3-fold induction) after 1-day troglitazone treatment, whereas after 10 days of treatment ACO mRNA levels were dramatically reduced (98% reduction, P < 0.02), as well as those of uncoupling protein 3 (41% reduction, P = 0.05). The mRNA expression of PPARalpha and several PPAR target genes, such as medium chain acyl-CoA dehydrogenase or fatty acid translocase were not altered after 10 days of troglitazone treatment, whereas muscle-type carnitine palmitoyltransferase I increased 1.7-fold (P < 0.05). The reduction in ACO expression in the hearts of 10-day troglitazone-treated mice was accompanied by an increase in the protein levels of the transcriptional repressor chicken ovalbumin upstream promoter transcription factor II (COUP-TF II). Electrophoretic mobility shift assays performed with COUP-TF II antibody to examine its interaction with a labeled peroxisome proliferator response element probe showed enhanced binding of COUP-TFII in cardiac nuclear extracts from troglitazone-treated mice for 10 days but not in the control nuclear extracts. Overall, the findings presented here show that 10 days of troglitazone treatment decreased expression of the ACO gene through a mechanism involving the transcriptional repressor COUP-TF II.  (+info)

Induction of peroxisomal beta-oxidation genes by retinoic acid in cultured rat hepatocytes. (59/269)

Retinoic acid is reported here to induce peroxisomal beta-oxidation activities in cultured rat hepatocytes, with a concomitant increase in respective peroxisomal mRNAs. The concentrations of retinoic acid required for inducing liver peroxisomal acyl-CoA oxidase were similar to those required for inducing liver transglutaminase. A putative 5'-flanking response element for retinoic acid may be found within the enhancer region involved in the induction of peroxisomal genes by xenobiotic amphipathic carboxylates.  (+info)

Induction of the three peroxisomal beta-oxidation enzymes is synergistically regulated by dexamethasone and fatty acids, and counteracted by insulin in Morris 7800C1 hepatoma cells in culture. (60/269)

This work describes the molecular mechanism of hormonal modulation of fatty-acid peroxisomal beta oxidation in liver. Morris 7800C1 hepatoma cells and isolated hepatocytes were cultured in the presence of myristic acid (1 mM) and tetradecylthioacetic acid, a 3-thia fatty acid (50 microM), separately or in combination with dexamethasone (0.25 microM) or insulin (0.4 microM). Myristic acid stimulated acyl-CoA oxidase and a synergistic action was observed with dexamethasone. Parallel changes were recognized in enzyme protein and mRNA levels as quantified from immunoblots and Northern analyses. Myristic acid and tetradecylthioacetic acid had similar effects on this enzyme, while insulin inhibited the basal activity and blocked all inductions by the fatty acids and dexamethasone. Parallel mRNA and immunoblot analyses of the subsequent enzymes in the peroxisomal beta-oxidation pathway, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/delta 3,delta 2-enoyl-CoA isomerase and 3-oxoacyl-CoA thiolase, showed an even stronger induction by tetradecylthioacetic acid and dexamethasone, while the counteraction by insulin was maintained in both 7800C1 hepatoma cells and hepatocytes. In hepatoma cells, the thiolase always showed the most pronounced induction (about 40-fold) after 14 days, with parallel changes in protein and mRNA levels. The results suggest that the changes in peroxisomal beta-oxidation enzymes in 7800C1 hepatoma cells are due to a major effect on steady-state mRNA levels giving rise to corresponding alterations in enzyme protein. These results may be explained by regulation at the level of transcription of corresponding genes, but mRNA stability changes and/or translational effects may also be of importance.  (+info)

Differential tissue-specific expression and induction of cytochrome P450IVA1 and acyl-CoA oxidase. (61/269)

We have examined the tissue-specific expression and inducibility of acyl-CoA oxidase and cytochrome P450IVA1 (P450IVA1) RNA in rats. Groups of three rats were dosed daily by gavage with methylclofenapate at 25 mg/kg in 5 ml/kg corn oil for nine weeks, or were administered a vehicle control. P450IVA1 and acyl-CoA oxidase RNA were detected using an RNase protection assay. Similar levels of acyl-CoA oxidase RNA were present in control liver and kidney, but the level of this RNA in lung, muscle and testis was 6-11%, and in pancreas was 0.13%, of that in liver. Treatment of rats with methylclofenapate led to an 11-fold induction of acyl-CoA oxidase RNA in liver and also produced a significant induction of this RNA in kidney, lung, muscle and testis of 1.7-fold, 1.3-fold, 2-fold and 1.7-fold, respectively. Acyl-CoA oxidase RNA was not induced in pancreas. P450IVA1 RNA was present in control liver and also in kidney of control rats at 28% of the level in liver. In contrast to acyl-CoA oxidase RNA, P450IVA1 RNA was not detected in lung, pancreas or testis. Methylclofenapate treatment of rats led to an 18-fold induction of P450IVA1 RNA in liver, and a sevenfold induction in kidney. Induction of P450IVA1 was not detected in any of the other tissues examined. Quantification of the relative amounts of acyl-CoA oxidase and P450IVA1 RNA in control liver revealed that acyl-CoA oxidase RNA was present in a 17.5-fold molar excess over P450IVA1 RNA. Western blotting with an anti-P450IVA IgG revealed two bands of similar apparent molecular mass in liver and kidney microsomes, but not in microsomes from the testis of control rats. Methylclofenapate treatment of rats caused an increase in the intensity of these bands in microsomes from liver, but no induction was obvious in kidney. Immunocytochemical staining for both the microsomal P450IVA and peroxisomal acyl-CoA oxidase proteins was restricted to the proximal convoluted tubule in the kidney cortex, with staining being most intense in the S3 region.  (+info)

Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. (62/269)

Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidase activity with different acyl-CoAs. Short chain mono (hexanoyl-) and dicarboxylyl (glutaryl-)-CoAs and prostaglandin E2-CoA were oxidized exclusively by palmitoyl-CoA oxidase. Long chain mono (palmitoyl-) and dicarboxylyl (hexadecanedioyl-)-CoAs were oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the former enzyme catalyzing approximately 70% of the total eluate activity. The very long chain lignoceroyl-CoA was also oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the latter enzyme catalyzing approximately 65% of the total eluate activity. Long chain 2-methyl branched acyl-CoAs (2-methylpalmitoyl-CoA and pristanoyl-CoA) were oxidized for approximately 90% by pristanoyl-CoA oxidase, the remaining activity being catalyzed by trihydroxycoprostanoyl-CoA oxidase. The short chain 2-methylhexanoyl-CoA was oxidized by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase (approximately 60 and 40%, respectively, of the total eluate activity). Trihydroxycoprostanoyl-CoA was oxidized exclusively by trihydroxycoprostanoyl-CoA oxidase. No oxidase activity was found with isovaleryl-CoA and isobutyryl-CoA. Substrate dependences of palmitoyl-CoA oxidase and pristanoyl-CoA oxidase were very similar when assayed with the same (common) substrate. Since the two oxidases were purified to a similar extent and with a similar yield, the contribution of each enzyme to substrate oxidation in the column eluate probably reflects its contribution in the intact liver.  (+info)

The activity and subcellular distribution of the peroxisomal enzyme acyl-CoA oxidase in human blood platelets. (63/269)

The peroxisomal enzyme acyl-CoA oxidase is localized in the 'dense-tubular-system-enriched fraction', probably identical with the endoplasmic reticulum, in human blood platelets. This localization is strongly different from the localization of catalase which seems to be a cytosolic enzyme, in agreement with Marcus, Zucker-Franklin, Safir & Ullman [(1966) J. Clin. Invest. 45, 14-28]. A localization of acyl-CoA oxidase in the endoplasmic reticulum seems to be in good accordance with the important role of peroxisomes in the metabolism of prostaglandins, as recently demonstrated by Diczfalusy, Kase, Alexson & Bjorkhem [(1991) J. Clin. Invest. 88, 978-984].  (+info)

Peroxisome division in the yeast Yarrowia lipolytica is regulated by a signal from inside the peroxisome. (64/269)

We describe an unusual mechanism for organelle division. In the yeast Yarrowia lipolytica, only mature peroxisomes contain the complete set of matrix proteins. These mature peroxisomes assemble from several immature peroxisomal vesicles in a multistep pathway. The stepwise import of distinct subsets of matrix proteins into different immature intermediates along the pathway causes the redistribution of a peroxisomal protein, acyl-CoA oxidase (Aox), from the matrix to the membrane. A significant redistribution of Aox occurs only in mature peroxisomes. Inside mature peroxisomes, the membrane-bound pool of Aox interacts with Pex16p, a membrane-associated protein that negatively regulates the division of early intermediates in the pathway. This interaction inhibits the negative action of Pex16p, thereby allowing mature peroxisomes to divide.  (+info)