Characterization and inhibitor discovery of one novel malonyl-CoA: acyl carrier protein transacylase (MCAT) from Helicobacter pylori. (17/41)

Type II fatty acid synthesis (FAS II) is an essential process for bacteria survival, and malonyl-CoA:acyl carrier protein transacylase (MCAT) is a key enzyme in FAS II pathway, which is responsible for transferring the malonyl group from malonyl-CoA to the holo-ACP by forming malonyl-ACP. In this work, we described the cloning, characterization and enzymatic inhibition of a new MCAT from Helicobacter pylori strain SS1 (HpMCAT), and the gene sequence of HpfabD was deposited in the GenBank database (Accession No. AY738332 ). Enzymatic characterization of HpMCAT showed that the K(m) value for malonyl-CoA was 21.01+/-2.3 microM, and the thermal- and guanidinium hydrochloride-induced unfolding processes for HpMCAT were quantitatively investigated by circular dichroism spectral analyses. Moreover, a natural product, corytuberine, was discovered to demonstrate inhibitory activity against HpMCAT with IC(50) value at 33.1+/-3.29 microM. Further enzymatic assay results indicated that corytuberine inhibits HpMCAT in an uncompetitive manner. To our knowledge, this is the firstly reported MCAT inhibitor to date. This current work is hoped to supply useful information for better understanding the MCAT features of H. pylori strain, and corytuberine might be used as a potential lead compound in the discovery of the antibacterial agents using HpMCAT as target.  (+info)

Identification of substrates of the Mycobacterium tuberculosis proteasome. (18/41)

The putative proteasome-associated proteins Mpa (Mycobaterium proteasomal ATPase) and PafA (proteasome accessory factor A) of the human pathogen Mycobacterium tuberculosis (Mtb) are essential for virulence and resistance to nitric oxide. However, a direct link between the proteasome protease and Mpa or PafA has never been demonstrated. Furthermore, protein degradation by bacterial proteasomes in vitro has not been accomplished, possibly due to the failure to find natural degradation substrates or other necessary proteasome co-factors. In this work, we identify the first bacterial proteasome substrates, malonyl Co-A acyl carrier protein transacylase and ketopantoate hydroxymethyltransferase, enzymes that are required for the biosynthesis of fatty acids and polyketides that are essential for the pathogenesis of Mtb. Maintenance of the physiological levels of these enzymes required Mpa and PafA in addition to proteasome protease activity. Mpa levels were also regulated in a proteasome-dependent manner. Finally, we found that a conserved tyrosine of Mpa was essential for function. Thus, these results suggest that Mpa, PafA, and the Mtb proteasome degrade bacterial proteins that are important for virulence in mice.  (+info)

Malonyl-CoA: acyl carrier protein transacylase from Helicobacter pylori: Crystal structure and its interaction with acyl carrier protein. (19/41)

Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.  (+info)

Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT). (20/41)

Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 A resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.  (+info)

Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of malonyl-CoA-acyl carrier protein transacylase (FabD) from Xanthomonas oryzae pv. oryzae. (21/41)

 (+info)

SMb20651 is another acyl carrier protein from Sinorhizobium meliloti. (22/41)

 (+info)

Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of MCAT from Staphylococcus aureus. (23/41)

 (+info)

New design platform for malonyl-CoA-acyl carrier protein transacylase. (24/41)

 (+info)