Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. (25/272)

In regenerating liver, a physiologically normal model of cell growth, LRF-1, JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 family members are induced posthepatectomy. In liver cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-1/c-Jun, and LRF-1/JunB complexes are present for several hours after the G0/G1 transition, and the relative level of LRF-1/JunB complexes increases during G1. We provide evidence for dramatic differences in promoter-specific activation by LRF-1- and c-Fos-containing complexes. LRF-1 in combination with either Jun protein strongly activates a cyclic AMP response element-containing promoter which c-Fos/Jun does not activate. LRF-1/c-Jun, c-Fos/c-Jun, and c-Fos/JunB activate specific AP-1 and ATF site-containing promoters, and in contrast, LRF-1/JunB potently represses c-Fos- and c-Jun-mediated activation of these promoters. Repression is dependent on a region in LRF-1 that includes amino acids 40 to 84 (domain R) and the basic/leucine zipper domain. As the relative level of LRF-1/JunB complexes increases posthepatectomy, c-Fos/Jun-mediated ATF and AP-1 site activation is likely to decrease with simultaneous transcriptional activation of the many liver-specific genes whose promoters contain cyclic AMP response element sites. Thus, through complex interactions among LRF-1, JunB, c-Jun, and c-Fos, control of delayed gene expression may be established for extended times during the G1 phase of hepatic growth.  (+info)

Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. (26/272)

Following human immunodeficiency virus type 1 (HIV-1) integration into the host cell's genome, the 5' long terminal repeat (LTR) is packaged into a highly specific chromatin structure comprised of an array of nucleosomes positioned with respect to important DNA sequence elements that regulate the transcriptional activity of the provirus. While several host cell factors have been shown to be important for chromatin remodeling and/or basal transcription, no specific mechanism that relieves the transcriptional repression imposed by nuc-1, a positioned nucleosome that impedes the start site of transcription, has been found. Since phorbol esters cause the rapid disruption of nuc-1 and markedly stimulate HIV-1 transcription, we looked for protein factors that associate with this region of the HIV-1 promoter in a phorbol-ester-dependent manner. We report here that ATF-3, JunB, and BRG-1 (the ATPase subunit of the 2-MDa human chromatin remodeling machine SWI/SNF) are recruited to the 3' boundary of nuc-1 following phorbol myristate acetate stimulation in Jurkat T cells. Analysis of the recruitment of BRG-1 in nuclear extracts prepared from Jurkat T cells and reconstitution of an in vitro system with purified components demonstrate that ATF-3 is responsible for targeting human SWI/SNF (hSWI/SNF) to the HIV-1 promoter. Importantly, this recruitment of hSWI/SNF required HMGA1 proteins. Further support for this conclusion comes from immunoprecipitation experiments showing that BRG-1 and ATF-3 can exist together in the same complex. Although ATF-3 clearly plays a role in the specific targeting of BRG-1 to the HIV-1 promoter, the maintenance of a stable association between BRG-1 and chromatin appears to be dependent upon histone acetylation. By adding BRG-1 back into a BRG-1-deficient cell line (C33A cells), we demonstrate that trichostatin A strongly induces the 5'-LTR-driven reporter transcription in a manner that is dependent upon BRG-1 recruitment.  (+info)

Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. (27/272)

In response to environmental stress, cells induce a program of gene expression designed to remedy cellular damage or, alternatively, induce apoptosis. In this report, we explore the role of a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) in coordinating stress gene responses. We find that expression of activating transcription factor 3 (ATF3), a member of the ATF/CREB subfamily of basic-region leucine zipper (bZIP) proteins, is induced in response to endoplasmic reticulum (ER) stress or amino acid starvation by a mechanism requiring eIF2 kinases PEK (Perk or EIF2AK3) and GCN2 (EIF2AK4), respectively. Increased expression of ATF3 protein occurs early in response to stress by a mechanism requiring the related bZIP transcriptional regulator ATF4. ATF3 contributes to induction of the CHOP transcriptional factor in response to amino acid starvation, and loss of ATF3 function significantly lowers stress-induced expression of GADD34, an eIF2 protein phosphatase regulatory subunit implicated in feedback control of the eIF2 kinase stress response. Overexpression of ATF3 in mouse embryo fibroblasts partially bypasses the requirement for PEK for induction of GADD34 in response to ER stress, further supporting the idea that ATF3 functions directly or indirectly as a transcriptional activator of genes targeted by the eIF2 kinase stress pathway. These results indicate that ATF3 has an integral role in the coordinate gene expression induced by eIF2 kinases. Given that ATF3 is induced by a very large number of environmental insults, this study supports involvement of eIF2 kinases in the coordination of gene expression in response to a more diverse set of stress conditions than previously proposed.  (+info)

Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. (28/272)

Nitric oxide (NO) has been shown to inhibit migration of cells in which various matrix metalloproteinases (MMPs) are involved. The underlying molecular mechanisms of this inhibition remain elusive. Endothelial cells (ECs) constitutively produce MMP-2. The effect of NO on MMP-2 expression was examined. A dose-dependent inhibition of MMP-2 mRNA level was demonstrated in ECs treated with NO. ECs infected with adenovirus carrying endothelial NO synthase (Ade-NOS) reduced MMP-2 expression. The inhibitory effect of NO on MMP-2 expression was a transcriptional event because NO reduced MMP-2 promoter activity. NO treatment of ECs consequently suppressed MMP-2 secretion revealed by zymographic assay. Functional analysis of MMP-2 promoter (1716 base pairs) indicated that the p53-binding site (-1659 to -1629) was crucial for MMP-2 promoter activity. Activating transcription factor 3 (ATF3) has been reported to act as a transcriptional repressor for p53. ECs treated with NO induced ATF3 expression. Consistently, Ade-NOS-infected ECs showed an increase of ATF3 level. Moreover, ECs either over-expressed ATF3 or, when treated with an ATF3 activator (MG-132; carbobenzoxy-l-leucyl-l-leucyl-l-leucinal), resulted in a repression of MMP-2 promoter activity. Because of MMP-2 suppression by NO, ECs treated with NO inhibited endothelial migration, a phenomenon similar to that of ECs treated with MMP-2 antibody or MG-132. These results indicate that NO-attenuating endothelial migration is mediated at least in part by its reduction of MMP-2 expression via the up-regulation of ATF3. This study provides a molecular basis that supports the notion that NO acts as a negative regulator in endothelial migration.  (+info)

ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter. (29/272)

BACKGROUND: Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. RESULTS: Following sciatic nerve injury--transection or transection and reanastomosis--ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo) and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells), beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. CONCLUSION: These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in regulating changes in gene expression necessary for preparing the distal segments of injured peripheral nerves for axonal regeneration. The absence of the ATF3 and c-Jun from CNS glia during Wallerian degeneration may limit their ability to support regeneration.  (+info)

Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. (30/272)

Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes a member of the ATF/CREB family of transcription factors. However, the physiological significance of ATF3 induction by stress signals is not clear. In this report, we describe several lines of evidence supporting a role of ATF3 in stress-induced beta-cell apoptosis. First, ATF3 is induced in beta cells by signals relevant to beta-cell destruction: proinflammatory cytokines, nitric oxide, and high concentrations of glucose and palmitate. Second, induction of ATF3 is mediated in part by the NF-kappaB and Jun N-terminal kinase/stress-activated protein kinase signaling pathways, two stress-induced pathways implicated in both type 1 and type 2 diabetes. Third, transgenic mice expressing ATF3 in beta cells develop abnormal islets and defects secondary to beta-cell deficiency. Fourth, ATF3 knockout islets are partially protected from cytokine- or nitric oxide-induced apoptosis. Fifth, ATF3 is expressed in the islets of patients with type 1 or type 2 diabetes, and in the islets of nonobese diabetic mice that have developed insulitis or diabetes. Taken together, our results suggest ATF3 to be a novel regulator of stress-induced beta-cell apoptosis.  (+info)

Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3. (31/272)

Cardiac-directed expression of adenylyl cyclase type VI (AC(VI)) increases stimulated cAMP production, improves heart function, and increases survival in cardiomyopathy. In contrast, pharmacological agents that increase intracellular levels of cAMP have detrimental effects on cardiac function and survival. We wondered whether effects that are independent of cAMP might be responsible for these salutary outcomes associated with AC(VI) expression. We therefore conducted a series of experiments focused on how gene transcription is influenced by AC(VI) in cultured neonatal rat cardiac myocytes, with a particular focus on genes that might influence cardiac function. We found that overexpression of AC(VI) down-regulated mRNA and protein expression of phospholamban, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase. We determined that the cAMP-responsive-like element in the phospholamban (PLB) promoter was critical for down-regulation by AC(VI). Overexpression of AC(VI) did not alter the expression of CREB, CREM, ATF1, ATF2, or ATF4 proteins. In contrast, overexpression of AC(VI) increased expression of ATF3 protein, a suppressor of transcription. Following AC(VI) gene transfer, when cardiac myocytes were stimulated with isoproterenol or NKH477, a water-soluble forskolin analog that directly stimulates AC, expression of ATF3 protein was increased even more, which correlated with reduced expression of PLB. We then showed that AC(VI)-induced ATF3 protein binds to the cAMP-responsive-like element on the PLB promoter and that overexpression of ATF3 in cardiac myocytes inhibits PLB promoter activity. These findings indicate that AC(VI) has effects on gene transcription that are not directly dependent on cAMP generation.  (+info)

TLR9 is localized in the endoplasmic reticulum prior to stimulation. (32/272)

In mammals, 10 TLRs recognize conserved pathogen-associated molecular patterns, resulting in the induction of inflammatory innate immune responses. One of these, TLR9, is activated intracellularly by bacterial DNA and synthetic oligodeoxynucleotides (ODN), containing unmethylated CpG dinucleotides. Following treatment with CpG ODN, TLR9 is found in lysosome-associated membrane protein type 1-positive lysosomes, and we asked which intracellular compartment contains TLR9 before CpG exposure. Surprisingly, we found by microscopy and supporting biochemical evidence that both transfected and endogenously expressed human TLR9 is retained in the endoplasmic reticulum. By contrast, human TLR4 trafficked to the cell surface, indicating that endoplasmic reticulum retention is not a property common to all TLRs. Because TLR9 is observed in endocytic vesicles following exposure to CpG ODN, our data indicate that a special mechanism must exist for translocating TLR9 to the signaling compartments that contain the CpG DNA.  (+info)