Metrifonate increases neuronal excitability in CA1 pyramidal neurons from both young and aging rabbit hippocampus. (9/21346)

The effects of metrifonate, a second generation cholinesterase inhibitor, were examined on CA1 pyramidal neurons from hippocampal slices of young and aging rabbits using current-clamp, intracellular recording techniques. Bath perfusion of metrifonate (10-200 microM) dose-dependently decreased both postburst afterhyperpolarization (AHP) and spike frequency adaptation (accommodation) in neurons from young and aging rabbits (AHP: p < 0.002, young; p < 0.050, aging; accommodation: p < 0.024, young; p < 0.001, aging). These reductions were mediated by muscarinic cholinergic transmission, because they were blocked by addition of atropine (1 microM) to the perfusate. The effects of chronic metrifonate treatment (12 mg/kg for 3 weeks) on CA1 neurons of aging rabbits were also examined ex vivo. Neurons from aging rabbits chronically treated with metrifonate had significantly reduced spike frequency accommodation, compared with vehicle-treated rabbits. Chronic metrifonate treatment did not result in a desensitization to metrifonate ex vivo, because bath perfusion of metrifonate (50 microM) significantly decreased the AHP and accommodation in neurons from both chronically metrifonate- and vehicle-treated aging rabbits. We propose that the facilitating effect of chronic metrifonate treatment on acquisition of hippocampus-dependent tasks such as trace eyeblink conditioning by aging subjects may be caused by this increased excitability of CA1 pyramidal neurons.  (+info)

GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina. (10/21346)

Afterdischarges represent a prominent characteristic of the neural network that controls prey capture reactions in the carnivorous mollusc Clione limacina. Their main functional implication is transformation of a brief sensory input from a prey into a lasting prey capture response. The present study, which focuses on the neuronal mechanisms of afterdischarges, demonstrates that a single pair of interneurons [cerebral A interneuron (Cr-Aint)] is responsible for afterdischarge generation in the network. Cr-Aint neurons are electrically coupled to all other neurons in the network and produce slow excitatory synaptic inputs to them. This excitatory transmission is found to be GABAergic, which is demonstrated by the use of GABA antagonists, uptake inhibitors, and double-labeling experiments showing that Cr-Aint neurons are GABA-immunoreactive. The Cr-Aint neurons organize three different pathways in the prey capture network, which provide positive feedback necessary for sustaining prolonged spike activity. The first pathway includes electrical coupling and slow chemical transmission from the Cr-Aint neurons to all other neurons in the network. The second feedback is based on excitatory reciprocal connections between contralateral interneurons. Recurrent excitation via the contralateral cell can sustain prolonged interneuron firing, which then drives the activity of all other cells in the network. The third positive feedback is represented by prominent afterdepolarizing potentials after individual spikes in the Cr-Aint neurons. Afterdepolarizations apparently represent recurrent GABAergic excitatory inputs. It is suggested here that these afterdepolarizing potentials are produced by GABAergic excitatory autapses.  (+info)

Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. (11/21346)

Orbitofrontal cortex (OFC) is part of a network of structures involved in adaptive behavior and decision making. Interconnections between OFC and basolateral amygdala (ABL) may be critical for encoding the motivational significance of stimuli used to guide behavior. Indeed, much research indicates that neurons in OFC and ABL fire selectively to cues based on their associative significance. In the current study recordings were made in each region within a behavioral paradigm that allowed comparison of the development of associative encoding over the course of learning. In each recording session, rats were presented with novel odors that were informative about the outcome of making a response and had to learn to withhold a response after sampling an odor that signaled a negative outcome. In some cases, reversal training was performed in the same session as the initial learning. Ninety-six of the 328 neurons recorded in OFC and 60 of the 229 neurons recorded in ABL exhibited selective activity during evaluation of the odor cues after learning had occurred. A substantial proportion of those neurons in ABL developed selective activity very early in training, and many reversed selectivity rapidly after reversal. In contrast, those neurons in OFC rarely exhibited selective activity during odor evaluation before the rats reached the criterion for learning, and far fewer reversed selectivity after reversal. The findings support a model in which ABL encodes the motivational significance of cues and OFC uses this information in the selection and execution of an appropriate behavioral strategy.  (+info)

Augmentation is a potentiation of the exocytotic process. (12/21346)

Short-term synaptic enhancement is caused by an increase in the probability with which synaptic terminals release transmitter in response to presynaptic action potentials. Since exocytosed vesicles are drawn from a readily releasable pool of packaged transmitter, enhancement must result either from an increase in the size of the pool or an elevation in the fraction of releasable vesicles that undergoes exocytosis with each action potential. We show here that at least one major component of enhancement, augmentation, is not caused by an increase in the size of the readily releasable pool but is instead associated with an increase in the efficiency with which action potentials induce the exocytosis of readily releasable vesicles.  (+info)

Response of hippocampal synapses to natural stimulation patterns. (13/21346)

We have studied the synaptic responses in hippocampal slices to stimulus patterns derived from in vivo recordings of place cell firing in a behaving rodent. We find that synaptic strength is strongly modulated during the presentation of these natural stimulus trains, varying 2-fold or more because of short-term plasticity. This modulation of synaptic strength is precise and deterministic, because the pattern of synaptic response amplitudes is nearly identical from one presentation of the train to the next. The mechanism of synaptic modulation is primarily a change in release probability rather than a change in the size of the elementary postsynaptic response. In addition, natural stimulus trains are effective in inducing long-term potentiation (LTP). We conclude that short-term synaptic plasticity--facilitation, augmentation, and depression--plays a prominent role in normal synaptic function.  (+info)

Comparative effects of methylmercury on parallel-fiber and climbing-fiber responses of rat cerebellar slices. (14/21346)

The environmental neurotoxicant methylmercury (MeHg) causes profound disruption of cerebellar function. Previous studies have shown that acute exposure to MeHg impairs synaptic transmission in both the peripheral and central nervous systems. However, the effects of MeHg on cerebellar synaptic function have never been examined. In the present study, effects of acute exposure to MeHg on synaptic transmission between parallel fibers or climbing fibers and Purkinje cells were compared in 300- to 350-microm cerebellar slices by using extracellular and intracellular microelectrode-recording techniques. Field potentials of parallel-fiber volleys (PFVs) and the associated postsynaptic responses (PSRs) were recorded in the molecular layer by stimulating the parallel fibers in transverse cerebellar slices. The climbing-fiber responses were also recorded in the molecular layer by stimulating white matter in sagittal cerebellar slices. At 20, 100, and 500 microM, MeHg reduced the amplitude of both PFVs and the associated PSRs to complete block, however, it blocked PSRs more rapidly than PFVs. MeHg also decreased the amplitudes of climbing-fiber responses to complete block. For all responses, an initial increase in amplitude preceded MeHg-induced suppression. Intracellular recordings of excitatory postsynaptic potentials of Purkinje cells were compared before and after MeHg. At 100 microM and 20 microM, MeHg blocked the Na+-dependent, fast somatic spikes and Ca++-dependent, slow dendritic spike bursts. MeHg also hyperpolarized and then depolarized Purkinje cell membranes, suppressed current conduction from parallel fibers or climbing fibers to dendrites of Purkinje cells, and blocked synaptically activated local responses. MeHg switched the pattern of repetitive firing of Purkinje cells generated spontaneously or by depolarizing current injection at Purkinje cell soma from predominantly Na+-dependent, fast somatic spikes to predominantly Ca++-dependent, low amplitude, slow dendritic spike bursts. Thus, acute exposure to MeHg causes a complex pattern of effects on cerebellar synaptic transmission, with apparent actions on both neuronal excitability and chemical synaptic transmission.  (+info)

Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed rectifier potassium current. (15/21346)

Proarrhythmia has been observed with the antipsychotic agent thioridazine (THIO). The mechanisms underlying these effects are unknown. The objectives of this study were 1) to characterize the effects of THIO on cardiac repolarization and 2) to determine whether lengthening of the Q-T interval could be explained by blocking major K+-repolarizing currents. Isolated, buffer-perfused guinea pig hearts (n = 32) were stimulated at various pacing cycle lengths (150-250 ms) and exposed to THIO at concentrations ranging from 300 nM to 3 microM. THIO increased monophasic action potential duration at 90% repolarization (MAPD90) in a concentration-dependent manner from 14.9 +/- 1.8 at 300 nM to 37.1 +/- 3.2 ms at 3 microM. Increase in MAPD90 was also reverse frequency-dependent; THIO (300 nM) increased MAPD90 by 14.9 +/- 1.8 ms at a pacing cycle length of 250 ms, but by only 7.7 +/- 1.2 ms at a pacing cycle length of 150 ms. Patch-clamp experiments demonstrated that THIO decreases the time-dependent outward K+ current elicited by short depolarizations (250 ms; IK250) in a concentration-dependent manner. Estimated IC50 for IK250, which mostly underlies IKr, was 1.25 microM. Time-dependent outward K+ current elicited in tsA201 cells expressing high levels of HERG protein was also decreased approximately 50% by 1.25 microM THIO. On the other hand, THIO was less potent (IC50 of 14 microM) to decrease time-dependent K+ current elicited by long pulses (5000 ms; IK5000). Under the latter conditions, IK5000 corresponds mainly to IKs. Thus, these results demonstrate block of K+ currents and lengthening of cardiac repolarization by THIO in a concentration-dependent manner. This may provide an explanation of Q-T prolongation observed in some patients treated with THIO.  (+info)

The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. (16/21346)

1. The response of the movement detector (MD) system to proportionally constant incremental and decremental stimuli has been studied at various degrees of light and dark adaptation. Action potentials in the descending contralateral movement detector neurone were taken as the indicator of response. 2. Over a range of at least six log10 units of adapting luminance, the MD system behaves as an ON/OFF unit, giving responses to both incremental and decremental changes in the illumination of a 5 degrees target. 3. With increasing amplitudes of stimuli, both the ON and OFF responses saturate rapidly. Saturation is reached sooner at higher levels of light adaptation. At all levels of light adaptation, the OFF response is greater than the ON. The ratio for saturating stimuli is approximately constant at around 3:2. 4. At the brightest adapting luminances used (20 000 cd/m2) the ON response is reduced but not lost. At the lowest (0-004 cd/m2) the OFF response to a 5 degrees disc fails, but can be regained by increasing the test area to 10 degrees. 5. From what is known of the retina of locusts and other insects, it is thought that light and dark adaptation in the MD system can be adequately explained by events at the retinula cell.  (+info)