Corticofugal amplification of facilitative auditory responses of subcortical combination-sensitive neurons in the mustached bat. (25/21346)

Recent studies on the bat's auditory system indicate that the corticofugal system mediates a highly focused positive feedback to physiologically "matched" subcortical neurons, and widespread lateral inhibition to physiologically "unmatched" subcortical neurons, to adjust and improve information processing. These findings have solved the controversy in physiological data, accumulated since 1962, of corticofugal effects on subcortical auditory neurons: inhibitory, excitatory, or both (an inhibitory effect is much more frequent than an excitatory effect). In the mustached bat, Pteronotus parnellii parnellii, the inferior colliculus, medial geniculate body, and auditory cortex each have "FM-FM" neurons, which are "combination-sensitive" and are tuned to specific time delays (echo delays) of echo FM components from the FM components of an emitted biosonar pulse. FM-FM neurons are more complex in response properties than cortical neurons which primarily respond to single tones. In the present study, we found that inactivation of the entire FM-FM area in the cortex, including neurons both physiologically matched and unmatched with subcortical FM-FM neurons, on the average reduced the facilitative responses to paired FM sounds by 82% for thalamic FM-FM neurons and by 66% for collicular FM-FM neurons. The corticofugal influence on the facilitative responses of subcortical combination-sensitive neurons is much larger than that on the excitatory responses of subcortical neurons primarily responding to single tones. Therefore we propose the hypothesis that, in general, the processing of complex sounds by combination-sensitive neurons more heavily depends on the corticofugal system than that by single-tone sensitive neurons.  (+info)

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. (26/21346)

Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann's areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a chi2 test did not reveal any significant differences in the Brodmann's areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.  (+info)

Correlated firing in rabbit retinal ganglion cells. (27/21346)

A ganglion cell's receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina using multiple electrodes have challenged this view of independent firing by showing that neighboring ganglion cells have an increased tendency to fire together within +/-5 ms. However, there is still uncertainty about which types of ganglion cells fire together, the mechanisms that produce coordinated spikes, and the overall function of coordinated firing. To address these issues, the responses of up to 80 rabbit retinal ganglion cells were recorded simultaneously using a multielectrode array. Of the 11 classes of rabbit ganglion cells previously identified, coordinated firing was observed in five. Plots of the spike train cross-correlation function suggested that coordinated firing occurred through two mechanisms. In the first mechanism, a spike in an interneuron diverged to produce simultaneous spikes in two ganglion cells. This mechanism predominated in four of the five classes including the ON brisk transient cells. In the second mechanism, ganglion cells appeared to activate each other reciprocally. This was the predominant pattern of correlated firing in OFF brisk transient cells. By comparing the receptive field profiles of ON and OFF brisk transient cells, a peripheral extension of the OFF brisk transient cell receptive field was identified that might be produced by lateral spike spread. Thus an individual OFF brisk transient cell can respond both to a light stimulus directed at the center of its receptive field and to stimuli that activate neighboring OFF brisk transient cells through their receptive field centers.  (+info)

Retinal input induces three firing patterns in neurons of the superficial superior colliculus of neonatal rats. (28/21346)

By using an in vitro isolated brain stem preparation, we recorded extracellular responses to electrical stimulation of the optic tract (OT) from 71 neurons in the superficial superior colliculus (SC) of neonatal rats (P1-13). At postnatal day 1 (P1), all tested neurons (n = 10) already received excitatory input from the retina. Sixty-nine (97%) superficial SC neurons of neonatal rats showed three response patterns to OT stimulation, which depended on stimulus intensity. A weak stimulus evoked only one spike that was caused by activation of non-N-methyl-D-aspartate (NMDA) glutamate receptors. A moderate stimulus elicited a short train (<250 ms) of spikes, which was induced by activation of both NMDA and non-NMDA receptors. A strong stimulus gave rise to a long train (>300 ms) of spikes, which was associated with additional activation of L-type high-threshold calcium channels. The long train firing pattern could also be induced either by temporal summation of retinal inputs or by blocking gamma-aminobutyric acid-A receptors. Because retinal ganglion cells show synchronous bursting activity before eye opening at P14, the retinotectal inputs appear to be sufficient to activate L-type calcium channels in the absence of pattern vision. Therefore activation of L-type calcium channels is likely to be an important source for calcium influx into SC neurons in neonatal rats.  (+info)

Comparison of local anesthetic activities between optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene. (29/21346)

The optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene (YAU-17) were compared for their local anesthetic activity, acute toxicity, spasmolytic activity, and partition coefficient between chloroform and phosphate buffer. 1-YAU-17 was more active than d-YAU-17 in blocking the conduction of action potentials in isolated frog sciatic nerves. The difference in local anesthetic activities between the optical isomers was further substantiated by in vivo tests for corneal anesthesia, intracutaneous anesthesia and sciatic nerve block in quinea-pigs. Similarly, the i.v. injection to mice revealed a higher toxicity for 1-YAU-17 as compared to its d-isomer. In these tests, the potency ratios of the enantiomers ranged from 2 to 4, and the racemate had an intermediate potency. On the contrary, no difference among the compounds was found in their liposolubility, partition coefficient, and spasmolytic activity examined with isolated guinea-pig ileum. These results indicate that the steric factors play an important role in the production of different local anesthetic activities between the optical isomers of YAU-17, and their local anesthetic potency tends to be correlated to their intravenous acute toxicity but not to their spasmolytic activity.  (+info)

Electrical and mechanical responses to diltiazem in potassium depolarized myocardium of the guinea pig. (30/21346)

Effects of diltiazem on the electrical and mechanical activities of guinea pig papillary muscle were investigated in K-rich Tyrode's solution (Kc1 12.7 mM). The electrical properties of cell membrane in K-rich solution were also examined in the ventricular muscle fibers. It was found that the overshoot as well as the maximum rate of rise (Vmax) of the action potential were highly sensitive to the extracellular concentration of CaC12 in K-rich solution. Vmax was also affected by NaC1. Diltiazem at a lower concentration (1.1 X 10(-7) M) caused a reduction in the contractile force of K-depolarized papillary muscle without producing significant changes in the resting and action potentials. In the presence of a higher concentration of diltiazem (1.1 X 10(-5) M), the contractile force decreased concurrently with the change in the action potential. Addition of CaC12 restored the original strength of contraction in parallel to the recovery of the action potential, especially in its overshoot and Vmax. From these results, it is inferred that diltiazem may decrease the contractile force of guinea pig papillary muscle either by interfering with the intrasmembrane calcium influx or by intracellularly reducing the free calcium ion concentration in the myoplasm.  (+info)

A glial-neuronal signaling pathway revealed by mutations in a neurexin-related protein. (31/21346)

In the nervous system, glial cells greatly outnumber neurons but the full extent of their role in determining neural activity remains unknown. Here the axotactin (axo) gene of Drosophila was shown to encode a member of the neurexin protein superfamily secreted by glia and subsequently localized to axonal tracts. Null mutations of axo caused temperature-sensitive paralysis and a corresponding blockade of axonal conduction. Thus, the AXO protein appears to be a component of a glial-neuronal signaling mechanism that helps to determine the membrane electrical properties of target axons.  (+info)

Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. (32/21346)

We made a computational model of a single neuron to study the effect of the small conductance (SK) Ca2+-dependent K+ channel on spike frequency adaptation. The model neuron comprised a Na+ conductance, a Ca2+ conductance, and two Ca2+-independent K+ conductances, as well as a small and a large (BK) Ca2+-activated K+ conductance, a Ca2+ pump, and mechanisms for Ca2+ buffering and diffusion. Sustained current injection that simulated synaptic input resulted in a train of action potentials (APs) which in the absence of the SK conductance showed very little adaptation with time. The transfer function of the neuron was nearly linear, i.e., both asymptotic spike rate as well as the intracellular free Ca2+ concentration ([Ca2+]i) were approximately linear functions of the input current. Adding an SK conductance with a steep nonlinear dependence on [Ca2+]i (. Pflugers Arch. 422:223-232; Kohler, Hirschberg, Bond, Kinzie, Marrion, Maylie, and Adelman. 1996. Science. 273:1709-1714) caused a marked time-dependent spike frequency adaptation and changed the transfer function of the neuron from linear to logarithmic. Moreover, the input range the neuron responded to with regular spiking increased by a factor of 2.2. These results can be explained by a shunt of the cell resistance caused by the activation of the SK conductance. It might turn out that the logarithmic relationships between the stimuli of some modalities (e.g., sound or light) and the perception of the stimulus intensity (Fechner's law) have a cellular basis in the involvement of SK conductances in the processing of these stimuli.  (+info)