Streptococci and Actinomyces induce antibodies which cross react with epithelial antigens in periodontitis. (65/562)

Perturbation of epithelial structure is a prominent but poorly understood feature of the immunopathological response to bacterial antigens which characterizes the destructive lesion of periodontitis. Western analysis of sera from 22 patients with periodontitis detected multiple antigens in extracts of epithelial cells whereas sera from 12 periodontally healthy subjects displayed only trace reaction with epithelial antigens. To investigate a possible relationship between the bacterial flora adjacent to diseased sites and the presence of antibodies reactive with epithelium, subgingival plaque samples were taken from deep periodontal pockets and cultured anaerobically. Gram positive bacteria containing antigens cross-reactive with epithelial cells were reproducibly isolated by probing membrane colony-lifts with affinity-isolated (epithelium-specific) antibodies and identified by 16S rDNA sequence homology as streptococci (S. mitis, S. constellatus and two S. intermedius strains) and Actinomyces (A. georgiae, and A. sp. oral clone). Conversely, when serum from patients with periodontitis was absorbed with the captured bacterial species the number of epithelial antigens recognized was specifically reduced. It was concluded that development of cross-reactive antibodies related to these organisms may contribute to perturbation of the epithelial attachment to the tooth and the progression of periodontitis. These autoreactive antibodies could also be a contributing factor in other diseases affecting epithelia.  (+info)

Mass transport of macromolecules within an in vitro model of supragingival plaque. (66/562)

The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.  (+info)

Importance of Actinomyces and certain gram-negative anaerobic organisms in the transformation of lymphocytes from patients with periodontal disease. (67/562)

Dental plaque deposits are known to be potent stimulants of lymphocyte transformation in patients with periodontal disease but not in normal subjects. Since plaque deposits consist mainly of whole bacteria, the cell walls of the most commonly found organisms in plaque were tested for their capacity to induce lymphocyte transformation. There was a direct correlation between the severity of peridontal disease and the amount of transformation induced by the cell walls of oral bacteria and by solubilized dental plaque. Cord blood leukocytes and lymphocytes from clinically normal people did not respond, which indicates that these stimulants are antigens rather than mitogens. Of the eleven bacteria tested, four members of the family Actinomycetaceae (Actinomyces viscosus, A. israelii, A. naeslundii, and Arachnia propionica), the related Propionibacterium acnes, and an anaerobic gram-negative anaerobic rod (27N). The high prevalence of the former organisms in the mature dental plaque that forms around the gingival crevice area and the potent efficacy with which they stimulate lymphocytes indicates that Actinomyces and certain gram-negative anaerobes may be important etiological agents in chronic periodontal inflammation in man.  (+info)

Actinomyces vaccimaxillae sp. nov., from the jaw of a cow. (68/562)

A previously undescribed Actinomyces-like bacterium was isolated from a lesion in the jaw of a cow. Based on its cellular morphology and the results of biochemical testing, the organism was tentatively identified as a member of the genus Actinomyces. Comparative 16S rRNA gene sequencing studies showed that the bacterium represents a hitherto unknown species within the genus Actinomyces, and is related to a group of species that includes Actinomyces turicensis and its close relatives. It is proposed that the unknown organism be classified as Actinomyces vaccimaxillae sp. nov. (the type strain is CCUG 46091T =CIP 107423T).  (+info)

Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. (69/562)

Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque.  (+info)

Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus. (70/562)

Streptococcus sanguis and Streptococcus mutans bind to the surface of Actinomyces viscosus, producing large microbial aggregates. Aggregates form rapidly and are not easily dissociated by vigorous mixing. The binding is mediated by dextran. Glucose-grown streptococci will not aggregate unless they are first mixed with high-molecular-weight dextran. Aggregation is induced with dextrans isolated from Leuconostoc, S. sanguis, or S. mutans. Sucrose-grown streptococci will adhere to A. viscosus without the addition of an exogenous source of dextran. A. viscosus will bind dextran and then bind glucose-grown streptococci. Aggregation occurs over a wide pH range and is dependent on cations. The aggregating activity of A. viscosus is both protease and heat sensitive. The aggregating activity of S. sanguis is heat stable but sensitive to dextranase.  (+info)

In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. (71/562)

By using an agar dilution method, the in vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, and five other agents were determined against 300 gram-positive and 54 gram-negative strains of intestinal anaerobes. Ramoplanin was active at or=256 microg/ml. Ramoplanin displays excellent activity against C. difficile and other gram-positive enteric anaerobes, including vancomycin-resistant strains; however, it has poor activity against most gram-negative anaerobes and thus potentially has a lesser effect on the ecological balance of normal fecal flora.  (+info)

Oral Actinomyces isolates forming red colonies on brain heart blood agar can bee unambiguously classified as A odontolyticus by macroscopic examination. (72/562)

The accurate classification of oral Actinomyces isolates as one species is difficult. Out of 18 Actinomyces isolates forming red colonies on brain heart blood agar, 12 could be straightforwardly assigned as Actinomyces odontolyticus by biochemical, morphological, and chemotaxonomic characteristics. For the remaining six isolates, the results of the different identification methods were inconsistent. By sequencing a 16S ribosomal DNA fragment by a rapid mass spectrometric method, all isolates could be identified unambiguously as A. odontolyticus. This result proves the importance of red colony pigmentation on brain heart blood agar together with the characteristic cell morphology for unequivocal assignment of oral Actinomyces isolates to the species A. odontolyticus.  (+info)