Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae. (49/288)

A comparative in vivo pharmacokinetic study of florfenicol was conducted in 18 crossbred pigs infected with Actinobacillus pleuropneumoniae following intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration of a single dose of 20 mg/kg. The disease model was confirmed by clinical signs, X rays, pathohistologic examinations, and organism isolation. Florfenicol concentrations in plasma were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm. Pharmacokinetic parameters were calculated by using the MCPKP software (Research Institute of Traditional Chinese Veterinary Medicine, Lanzhou, China). The disposition of florfenicol after a single i.v. bolus was described by a two-compartment model with values for the half-life at alpha phase (t(1/2alpha)), the half-life at beta phase (t(1/2beta)), the area under the concentration-time curve (AUC(0- infinity )), and the volume of distribution at steady state (V(ss)) of 0.37 h, 2.91 h, 64.86 micro g. h/ml, and 1.2 liter/kg, respectively. The concentration-time data fitted the one-compartment (after i.m.) and two-compartment (after p.o.) models with first-order absorption. The values for the maximum concentration of drug in serum (C(max)), t(1/2alpha), t(1/2beta), and bioavailability after i.m. and p.o. dosing were 4.00 and 8.11 micro g/ml, 0.12 and 3.91 h, 13.88 and 16.53 h, and 122.7 and 112.9%, respectively, for the two models. The study showed that florfenicol was absorbed quickly and completely, distributed widely, and eliminated slowly in the infected pigs, and there was no statistically significant difference between the pharmacokinetic profiles for the infected and healthy pigs.  (+info)

Incidence of reinfections with Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae in pig farms located in respiratory-disease-free regions of Switzerland--identification and quantification of risk factors. (50/288)

The objective of the study was to identify risk factors for reintroduction of Actinobacillus pleuopneumoniae and Mycoplasma hyopneumoniae (enzootic pneumonia) onto pig farms in areas in Switzerland that were involved in an eradication programme from 1996 to 1999 and to assess the role of dealers in relation to these reinfections. The study was based on the comparison of pig farms that were reinfected in the year 2000 (cases) and pig farms that remained uninfected in the same area (controls). Additionally, data were collected from Swiss pig dealers and transport companies. Out of a total of 3983 farms, 107 farms were reinfected in the year 2000. The incidences were 0.1% for Actinobacillus pleuopneumoniae and 2.6% for Mycoplasma hyopneumoniae (enzootic pneumonia). Compared to reinfection rates prior to the eradication programme, this is a considerable reduction. Statistically significant risk factors for the reinfection were 'finishing farm', 'large mixed breeding-finishing farm', 'reinfected neighbour' and 'parking site for pig transport vehicles close to the farm'. Pig farmers that purchased pigs from only one supplier per batch had a lower risk of reintroducing infection (protective factor). As long as infected and uninfected regions co-exist in Switzerland, direct and indirect contact between farms, pig herds and slaughter sites via transport vehicles are a major pathway of disease spread. Risk management measures linked to these contacts are therefore of key importance. The survey of dealers indicated various areas for improvement such as strategic planning of pick-up routes or cleaning and disinfecting of trucks.  (+info)

Expression of cyclooxygenase-2 in swine naturally infected with Actinobacillus pleuropneumoniae. (51/288)

Cyclooxygenase-2 (COX-2) was detected and localized in 15 pigs with naturally occurring pleuropneumonia using a 437-base pair digoxigenin-labeled cDNA probe in an in situ hybridization protocol. Histopathologic changes in the acute stage were characterized by coagulative necrosis of lung parenchyma, hemorrhage, vascular thrombosis, edema, fibrin deposition, and infiltration of lung parenchyma by neutrophils and alveolar macrophages in nine pigs. In chronic lesions, a thick layer of granulation tissue surrounded foci of pulmonary necrosis in six pigs. All 15 pigs infected with Actinobacillus pleuropneumoniae, confirmed by bacterial isolation, had distinct positive hybridization signals for COX-2 in bronchial, bronchiolar epithelial cells, alveolar macrophages, neutrophils, and type I pneumocytes. COX-2 expression was detected primarily in neutrophils from pigs with acute lesions and primarily in alveolar macrophages from pigs with chronic lesions. The results suggest that a prostanoid product of COX-2 is an important component of the inflammatory response to acute and chronic A. pleuropneumoniae infection.  (+info)

fhuA of Actinobacillus pleuropneumoniae encodes a ferrichrome receptor but is not regulated by iron. (52/288)

The swine pathogen Actinobacillus pleuropneumoniae possesses a 75-kDa outer membrane protein (OMP), FhuA, the receptor for ferrichrome, a hydroxamate-type siderophore. Polyclonal serum to FhuA reacted with OMP preparations from 12 serotypes of A. pleuropneumoniae under conditions of iron repletion and restriction. Reverse transcription-PCR confirmed that A. pleuropneumoniae fhuA expression is not upregulated in response to low iron levels. An A. pleuropneumoniae fhuA deletion mutant was generated and showed abolishment of ferrichrome uptake.  (+info)

Evidence of nitric oxide synthase 2 activity in swine naturally infected with Actinobacillus pleuropneumoniae. (53/288)

Evidence of nitric oxide synthase (NOS) 2 activity was determined by formation of nitrotyrosine (a reaction product of peroxynitrite) and by activation of poly(ADP-ribose) synthetase (PARS) in NOS2-expressed pleuropneumonic lungs from 20 pigs naturally infected with Actinobacillus pleuropneumoniae using immunohistochemistry. Intense immunostaining for nitrotyrosine residue was seen within the lung lesions from A. pleuropneumoniae-infected pigs, but it was minimal in the unaffected parts of the lung from A. pleuropneumoniae-infected pigs and in the normal lung from control pigs. Staining was especially strong in neutrophils and macrophages in the periphery of the lesions and within the alveolar spaces. There was close cell-to-cell correlation when serial sections were examined by immunohistochemistry for NOS2 and nitrotyrosine in each of the 20 lung samples. Expression of PARS was always present within inflammatory lesions but was minimal in the unaffected lung of A. pleuropneumoniae-infected pigs. Macrophages in alveolar spaces frequently exhibited strong staining for PARS. Colocalization of nitrotyrosine and PARS antigen was especially prominent in macrophages in the periphery of lesions. NOS2 expression in pleuropneumonic areas associated with protein nitrosation and PARS suggests that NOS2 is functionally active during infections caused by A. pleuropneumoniae.  (+info)

Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs. (54/288)

The capsular polysaccharide (CP) of Actinobacillus pleuropneumoniae is required for virulence of the bacteria in swine. However, a molecular investigation of whether the type or quantity of CP affects A. pleuropneumoniae virulence has not been reported. To initiate this investigation, a DNA region downstream of conserved genes required for CP export in A. pleuropneumoniae serotype 1 was cloned and sequenced. Three open reading frames, designated cps1A, cps1B, and cps1C, were identified that had amino acid homology to bacterial carbohydrate biosynthesis genes. A kanamycin resistance cassette (Kan(r)) was inserted into a 750-bp deletion spanning cps1AB or into a 512-bp deletion in cps1B only, and the constructs were cloned in a suicide vector. The Kan(r) gene was then transferred into the chromosome of strain 4074 by homologous recombination to produce strain 4074Deltacps1N and strain 4074Deltacps1B, respectively. Strain 4074Deltacps1N produced no detectable CP, but strain 4074Deltacps1B made 15% of the serotype 1 CP made by the parent strain, 4074, as determined by enzyme-linked immunosorbent assay and precipitation of free CP. The cps1ABC genes of strain 4074 and the cps5ABC and cps5ABCDE genes of serotype 5a strain J45 were cloned into the shuttle vector pLS88 and electroporated into 4074Deltacps1N to produce 4074Deltacps1N(pABcps101), 4074Deltacps1N(pJMLcps53), and 4074Deltacps1N(pABcps55), respectively. Strain 4074Deltacps1N(pABcps101) produced about 33% of the serotype 1 CP produced by strain 4074. Strains 4074Deltacps1N(pJMLcps53) and 4074Deltacps1N(pABcps55) produced serotype 5a CP in similar quantity or in fourfold excess, respectively, to that produced by strain 4074. With intratracheal challenge in pigs at similar dosages, the order of virulence of strains producing serotype 1 CP (assessed by mortality, lung consolidation, hemorrhage, and fibrinous pleuritis) was the following: strain 4074 > strain 4074Deltacps1N(pABcps101) > or = strain 4074Deltacps1N > strain 4074Deltacps1B. Strain 4074Deltacps1N(pJMLcps53) was less virulent than strain 4074Deltacps1N(pABcps55). However, both strains produced serotype 5a CP in similar or greater quantities than was observed for production of serotype 1 CP by the parent strain, 4074, but were less virulent than the parent strain. Therefore, the amount of serotype 1 or 5a CP produced by isogenic strains of A. pleuropneumoniae correlated with the virulence of the bacteria in pigs. However, virulence was also influenced by the type of CP produced or by its mechanism of expression.  (+info)

Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host. (55/288)

Actinobacillus pleuropneumoniae is a strict respiratory tract pathogen of swine and is the causative agent of porcine pleuropneumonia. We have used signature-tagged mutagenesis (STM) to identify genes required for survival of the organism within the pig. A total of 2,064 signature-tagged Tn10 transposon mutants were assembled into pools of 48 each, and used to inoculate pigs by the endotracheal route. Out of 105 mutants that were consistently attenuated in vivo, only 11 mutants showed a >2-fold reduction in growth in vitro compared to the wild type, whereas 8 of 14 mutants tested showed significant levels of attenuation in pig as evidenced from competitive index experiments. Inverse PCR was used to generate DNA sequence of the chromosomal domains flanking each transposon insertion. Only one sibling pair of mutants was identified, but three apparent transposon insertion hot spots were found--an anticipated consequence of the use of a Tn10-based system. Transposon insertions were found within 55 different loci, and similarity (BLAST) searching identified possible analogues or homologues for all but four of these. Matches included proteins putatively involved in metabolism and transport of various nutrients or unknown substances, in stress responses, in gene regulation, and in the production of cell surface components. Ten of the sequences have homology with genes involved in lipopolysaccharide and capsule production. The results highlight the importance of genes involved in energy metabolism, nutrient uptake and stress responses for the survival of A. pleuropneumoniae in its natural host: the pig.  (+info)

Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine. (56/288)

The gram-negative bacterium Actinobacillus pleuropneumoniae is the causative agent of porcine fibrinohemorrhagic necrotizing pleuropneumonia, a disease that causes important economic losses to the swine industry worldwide. In general, the initial step of bacterial colonization is attachment to host cells. The purpose of the present study was to evaluate the binding of A. pleuropneumoniae serotype 1 to phospholipids, which are the major constituents of biological membranes. Phospholipids serve as receptors for several bacteria, including respiratory pathogens. To study this effect, we used thin-layer chromatography overlay binding assays to test commercial phospholipids such as phosphatidic acid, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and phosphatidylethanolamine (PE). Our results indicate that A. pleuropneumoniae serotype 1 binds to PE but not to the other phospholipids tested. Serotypes 5b and 7, which, along with serotype 1, are the most prevalent serotypes of A. pleuropneumoniae in North America, share the ability to bind PE. Inhibition of binding with a monoclonal antibody against A. pleuropneumoniae serotype 1 O antigen and the use of isogenic lipopolysaccharide (LPS) mutants of A. pleuropneumoniae serotype 1 showed that the O antigen seems to be implicated in the binding to PE, at least for A. pleuropneumoniae serotype 1. A. pleuropneumoniae was also shown to bind to a phospholipid extracted from swine lungs by using the method of Folch. Chemical staining with molybdenum blue and ninhydrin, migration with neutral, acidic, and basic solvent systems, and mass spectrometry analysis all indicated that this lipid is PE. This study is, to the best of our knowledge, the first description of A. pleuropneumoniae binding to phospholipids. Our data also suggest that LPS O antigens could be involved in binding to PE.  (+info)