Engineering anthracycline biosynthesis toward angucyclines. (9/93)

The biosynthesis pathways of two anthracyclines, nogalamycin and aclacinomycin, were directed toward angucyclines by using an angucycline-specific cyclase, pgaF, isolated from a silent antibiotic biosynthesis gene cluster. Addition of pgaF to a gene cassette that harbored the early biosynthesis genes of nogalamycin resulted in the production of two known angucyclinone metabolites, rabelomycin and its precursor, UWM6. Substrate flexibility of pgaF was demonstrated by replacement of the nogalamycin minimal polyketide synthase genes in the gene cassette with the equivalent aclacinomycin genes together with aknE2 and aknF, which specify the unusual propionate starter unit in aclacinomycin biosynthesis. This modification led to the production of a novel angucyclinone, MM2002, in which the expected ethyl side chain was incorporated into the fourth ring.  (+info)

Crystal structure of aclacinomycin methylesterase with bound product analogues: implications for anthracycline recognition and mechanism. (10/93)

Aclacinomycin methylesterase (RdmC) is one of the tailoring enzymes that modify the aklavinone skeleton in the biosynthesis of anthracyclines in Streptomyces species. The crystal structures of this enzyme from Streptomyces purpurascens in complex with the product analogues 10-decarboxymethylaclacinomycin T and 10-decarboxymethylaclacinomycin A were determined to nominal resolutions of 1.45 and 1.95 A, respectively. RdmC is built up of two domains. The larger alpha/beta domain shows the common alpha/beta hydrolase fold, whereas the smaller domain is alpha-helical. The active site and substrate binding pocket are located at the interface between the two domains. Decarboxymethylaclacinomycin T and decarboxymethylaclacinomycin A bind close to the catalytic triad (Ser102-His276-Asp248) in a hydrophobic pocket, with the sugar moieties located at the surface of the enzyme. The binding of the ligands is dominated by hydrophobic interactions, and specificity appears to be controlled mainly by the shape of the binding pocket rather than through specific hydrogen bonds. Mechanistic key features consistent with the structure of complexes of RdmC with product analogues are Ser102 acting as nucleophile and transition state stabilization by an oxyanion hole formed by the backbone amides of residues Gly32 and Met103.  (+info)

Parathyroid hormone-related protein as a cause of hypercalcemia in a B-cell type malignant lymphoma. (11/93)

Hypercalcemia occurred in a patient with non-Hodgkin's (B-cell type) lymphoma when generalized lymphadenopathy developed. Despite low normal plasma parathyroid hormone (PTH), nephrogenous cAMP (NcAMP) was not suppressed, and serum and urine PTH-related protein (PTH-rP) levels were elevated. The plasma level of 1,25(OH)2D was within normal range. The combined chemotherapies successfully reduced the tumor size, serum Ca, PTH-rP, and lactic dehydrogenase. Serum osteocalcin was suppressed while the patient was hypercalcemic, and increased after chemotherapy. In the extract of the tumor tissue obtained post mortem, bioactivity stimulating the production of cAMP in osteoblasts was demonstrated along with the immunoreactive PTH-rP. This is the first report of a B-cell lymphoma producing PTH-rP and its association with humoral hypercalcemia of malignancy.  (+info)

Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. (12/93)

Tripeptidyl aldehyde proteasome inhibitors have been shown to effectively increase viral capsid ubiquitination and transduction of recombinant adeno-associated virus type 2 (rAAV-2) and rAAV-5 serotypes. In the present study we have characterized a second class of proteasome-modulating agents (anthracycline derivatives) for their ability to induce rAAV transduction. The anthracycline derivatives doxorubicin and aclarubicin were chosen for analysis because they have been shown to interact with the proteasome through a mechanism distinct from that of tripeptidyl aldehydes. Our studies demonstrated that doxorubicin and aclarubicin also significantly augmented rAAV transduction in airway cell lines, polarized human airway epithelia, and mouse lungs. Both tripeptidyl aldehyde and anthracycline proteasome-modulating agents similarly augmented nuclear accumulation of rAAV in A549 and IB3 airway cell lines. However, these two cell types demonstrated cell specificity in the ability of N-acetyl-L-leucyl-L-leucyl-L-norleucine (LLnL) or doxorubicin to augment rAAV transduction. Interestingly, the combined administration of LLnL and doxorubicin resulted in substantially increased transduction (>2,000-fold) following apical infection of human polarized epithelia with either rAAV-2 or rAAV-5. In summary, the cell type specificity of LLnL and doxorubicin to induce rAAV transduction, together with the ability of these compounds to synergistically enhance rAAV transduction in polarized airway epithelial induction, suggests that these two classes of compounds likely modulate different proteasome functions that affect rAAV transduction. Findings from this study provide new insights into how modulation of proteasome function can be effectively used to augment rAAV transduction in airway epithelia for gene therapy of cystic fibrosis.  (+info)

Preparation of magnetic polybutylcyanoacrylate nanospheres encapsulated with aclacinomycin A and its effect on gastric tumor. (13/93)

AIM: To evaluate the effect of aclacinomycin A-loaded magnetic polybutylcyanoacrylate nanoparticles on gastric tumor growth in vivo and in vitro. METHODS: Magnetic polybutylcyanoacrylate (PBCA) nanospheres encapsulated with aclacinomycin A (MPNS-ACM) were prepared by interfacial polymerization. Particle size, shape and drug content were examined. Female BABL/c nude mice were implanted with MKN-45 gastric carcinoma tissues subcutaneously to establish human gastric carcinoma model. The mice were randomly divided into 5 groups of 6 each: ACM group (8 mg/kg bm); group of high dosage of MPNS-ACM (8 mg/kg bm); group of low dosage of MPNS-ACM (1.6 mg/kg bm); group of magnetic PBCA nanosphere (MPNS) and control group (normal saline). Magnets (2.5 T) were implanted into the tumor masses in all of the mice one day before the therapy. Above-mentioned drugs were administered intravenously to the mice of every group on the first day and sixth day. When the mice were sacrificed, tumor weight was measured, and the assay of granulocyte- macrophage colony forming-unit (CFU-GM) was performed on semi-solid culture. White blood cell, alanine aminotransferase and creatine were examined. 3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to examine the viability of MKN-45 cells after incubation with different concentrations of ACM, MPNS and MPNS-ACM suspension respectively for 48 h. RESULTS: Content of ACM in MPNS-ACM was 12.0% and the average diameter of the particles was 210 nm. The inhibitory rates of ACM (8 mg/kg bm), high dosage of MPNS-ACM (8 mg/kg bm), low dosage of MPNS-ACM (1.6 mg/kg bm) and MPNS on human gastric carcinoma in nude mice were 22.63%, 52.55%, 30.66% and 10.22%, respectively. There was a significant decrease in the number of CFU-GM of bone marrow in ACM group compared with control group, whereas no obvious change was observed in that of the nanosphere groups. The values of 50% inhibition concentration (IC50) of ACM, MPNS and MPNS-ACM were 0.09, 97.78 and 1.07 microg/mL, respectively. CONCLUSION: The tumor inhibitory rate of MPNS-ACM was much higher than that of ACM under magnetic field and the inhibition on bone marrow was alleviated significantly compared with ACM group.  (+info)

Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. (14/93)

When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.  (+info)

Kinetic parameters for the uptake of anthracycline by drug-resistant and drug-sensitive K562 cells. (15/93)

Fluorescence-emission spectra from anthracycline-treated cells suspended in buffer have been used to measure the uptake of three anthracycline derivatives: adriamycin, 4'-O-tetrahydropyranyladriamycin and aclacinomycin in drug-sensitive and drug-resistant K562 cells. The initial rate of uptake and the kinetics of active efflux under the effect of an integral membrane glycoprotein, P-glycoprotein, have been measured as a function of temperature. The activation energies for the passage of the drugs through the plasma membrane have been calculated. In the case of 4'-O-tetrahydropyranyladriamycin, the activation energies for the passive diffusion of the drug equal 45 kJ.mol-1 and 37 kJ.mol-1 for sensitive and resistant cells, respectively. The activation energy for the active efflux of 4'-O-tetrahydropyranyladriamycin equal 25 kJ.mol-1.  (+info)

High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells. (16/93)

AIM: To investigate the possibility of recombinant high-density lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells. METHODS: Recombinant complex of HDL and aclacinomycin (rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine. Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles, morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method. RESULTS: The density range of rHDL-ACM was 1.063-1.210 g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%. Encapsulated efficiencies of rHDL-ACM were more than 90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26+/-5.62 nm by measure of 110 rHDL-ACM particles in the range of diameter of lipoproteins. rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 microg/mL (P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 microg/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM (1.68 nmol/L vs 3 nmol/L). Compared to L02 hepatocytes, a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 microg/mL. Cytotoxicity of the rHDL-ACM to SMMC-7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5 microg/mL (P<0.01). IC50 for SMMC-7721 cells (1.68 nmol/L) was lower than that for L02 cells (5.68 nmol/L), showing a preferential cytotoxicity of rHDL-ACM for SMMC-7721 cells. CONCLUSION: rHDL-ACM complex keeps the basic physical and biological binding properties of native HDL and shows a preferential cytotoxicity for SMMC-7721 hepatoma to normal L02 hepatocytes. HDL is a potential carrier for delivering lipophilic antitumoral drug to hepatoma cells.  (+info)