Correction of acidosis in hemodialysis decreases whole-body protein degradation. (25/1411)

Correction of acidosis in hemodialysis (HD) decreases protein degradation. The effect of the correction of chronic metabolic acidosis in chronic renal failure patients treated with HD was determined from the kinetics of infused L-[1-(13)C]leucine. Six HD patients were studied before (acid) and after (bicarbonate) correction of acidosis (pH: acid 7.36 +/- 0.01, bicarbonate 7.40 +/- 0.01, P < 0.005). Leucine appearance from body protein (PD) and leucine disappearance into body protein (PS) decreased significantly with correction of acidosis (PD: acid 180.6 +/- 7.3, bicarbonate 130.9 +/- 7.2 mumol.kg-1.h-1, P < 0.005; PS: acid 172.3 +/- 6.8, bicarbonate 122.0 +/- 6.8 mumol.kg-1.h-1, P < 0.005). There was no significant change in leucine oxidation or plasma amino acid concentrations. These results demonstrate that optimal correction of acidosis in HD is beneficial in terms of protein turnover and may improve long-term nutritional status in HD.  (+info)

Novel role of the Ca(2+)-ATPase in NMDA-induced intracellular acidification. (26/1411)

The mechanism involved in N-methyl-D-glucamine (NMDA)-induced Ca(2+)-dependent intracellular acidosis is not clear. In this study, we investigated in detail several possible mechanisms using cultured rat cerebellar granule cells and microfluorometry [fura 2-AM or 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM]. When 100 microM NMDA or 40 mM KCl was added, a marked increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) and a decrease in the intracellular pH were seen. Acidosis was completely prevented by the use of Ca(2+)-free medium or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca(2+). The following four mechanisms that could conceivably have been involved were excluded: 1) Ca(2+) displacement of intracellular H(+) from common binding sites; 2) activation of an acid loader or inhibition of acid extruders; 3) overproduction of CO(2) or lactate; and 4) collapse of the mitochondrial membrane potential due to Ca(2+) uptake, resulting in inhibition of cytosolic H(+) uptake. However, NMDA/KCl-induced acidosis was largely prevented by glycolytic inhibitors (iodoacetate or deoxyglucose in glucose-free medium) or by inhibitors of the Ca(2+)-ATPase (i.e., Ca(2+)/H(+) exchanger), including La(3+), orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca(2+)-ATPase is involved in NMDA-induced intracellular acidosis in granule cells. We also provide new evidence that NMDA-evoked intracellular acidosis probably serves as a negative feedback signal, probably with the acidification itself inhibiting the NMDA-induced [Ca(2+)](i) increase.  (+info)

Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. (27/1411)

The roles of pyruvate dehydrogenase (PDH), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism were examined during incremental exercise after ingestion of 0.3 g/kg of either NH(4)Cl [metabolic acidosis (ACID)] or CaCO(3) [control (CON)]. Subjects were studied at rest, at rest postingestion, and during continuous steady-state cycling at three stages (15 min each): 30, 60, and 75% of maximal oxygen uptake. Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ACID resulted in significantly lower intramuscular concentration of [Lac(-)] (ACID 40.8 vs. CON 56.9 mmol/kg dry wt), arterial whole blood [Lac(-)] (ACID 4.7 vs. CON 6.5 mmol/l), and leg Lac(-) efflux (ACID 3.05 vs. CON 6.98 mmol. l(-1). min(-1)). The reduced intramuscular [Lac(-)] resulted from decreases in pyruvate production due to inhibition of glycogenolysis, at the level of Phos a, and phosphofructokinase, together with an increase in the amount of pyruvate oxidized relative to the total produced. The reduction in Phos a activity was mediated through decreases in transformation, decreases in free inorganic phosphate concentration, and decreases in the posttransformational allosteric regulator free AMP. Reduced PDH activity occurred with ACID and may have resulted from alterations in the concentrations of acetyl-CoA, free ADP, pyruvate, NADH, and H(+), leading to greater relative activity of the kinase. The results demonstrate that imposed metabolic acidosis in skeletal muscle results in decreased Lac(-) production due to inhibition of glycogenolysis at the level of Phos and increased pyruvate oxidation at PDH.  (+info)

cAMP production by piglet cerebral vascular smooth muscle cells: pH(o), pH(i), and permissive action of PGI(2). (28/1411)

In newborn pig pial arterioles and cocultures of cerebral microvascular endothelial and smooth muscle cells, hypercapnia increases cAMP. In the intact cerebral circulation, both the increase in cAMP and the accompanying vasodilation require the presence of PGI(2). Using piglet cerebral microvascular smooth muscle in primary culture, we addressed the hypothesis that, in the presence of PGI(2), hypercapnia-induced changes in extracellular pH cause increases in cAMP. The stable PGI(2)-receptor agonist iloprost did increase production of cAMP in response to combined extracellular pH and pH(i) (11 +/- 6 vs. 32 +/- 10% in the absence and presence of 10(-10) M iloprost, respectively). However, there was no positive dose-response relationship between iloprost concentration and stimulation of cAMP production by acidosis (e.g., 58 +/- 9 vs. 41 +/- 5% in the presence of 10(-12) and 10(-9) M iloprost, respectively). Rapid decreases in pH(i) stimulate the cAMP production. Decreases in extracellular pH do not appear to contribute further. The G protein inhibitor pertussis toxin did not augment cAMP production in response to decreasing pH(i). We conclude that PGI(2) receptor activation permits another mechanism to enhance cAMP generation in response to intracellular, but not extracellular, acidosis and that the mechanism of the permissive effect of PGI(2) does not involve inhibition of a pertussis toxin-sensitive G protein.  (+info)

In vitro metabolic and respiratory acidosis selectively inhibit osteoblastic matrix gene expression. (29/1411)

Clinically, a decrease in blood pH may be due to either a reduction in bicarbonate concentration ([HCO(-)(3)], metabolic acidosis) or an increase in PCO(2) (respiratory acidosis). In mammals, metabolic acidosis induces a far greater increase in urine calcium excretion than respiratory acidosis. In cultured bone, metabolic acidosis induces a marked increase in calcium efflux and a decrease in osteoblastic collagen synthesis, whereas isohydric respiratory acidosis has little effect on either parameter. We have shown that metabolic acidosis prevents the normal developmental increase in the expression of RNA for matrix Gla protein and osteopontin in chronic cultures of primary murine calvarial bone cells (predominantly osteoblasts) but does not alter expression of osteonectin. To compare the effects of isohydric metabolic and respiratory acidosis on expression of these genes, bone cell cultures were incubated in medium at pH approximately 7.2 to model metabolic ([HCO(-)(3)], approximately 13 mM) or respiratory (PCO(2), approximately 80 mmHg) acidosis or at pH approximately 7.4 as a control. Cells were sampled at weeks 4, 5, and 6 to assess specific RNA content. At all time periods studied, both metabolic and respiratory acidosis inhibited the expression of RNA for matrix Gla protein and osteopontin to a similar extent, whereas there was no change in osteonectin expression. In contrast to the significant difference in the effects of metabolic and respiratory acidosis on bone calcium efflux and osteoblastic collagen synthesis, these two forms of acidosis have a similar effect on osteoblastic RNA expression of both matrix Gla protein and osteopontin. Thus, although several aspects of bone cell function are dependent on the type of acidosis, expression of these two matrix genes appears to be regulated by extracellular pH, independently of the type of acidosis.  (+info)

Effects of in vivo metabolic acidosis on midcortical bone ion composition. (30/1411)

Chronic metabolic acidosis increases urine calcium excretion without altering intestinal calcium absorption, suggesting that bone mineral is the source of the additional urinary calcium. During metabolic acidosis there appears to be an influx of protons into bone mineral, lessening the magnitude of the decrement in pH. Although in vitro studies strongly support a marked effect of metabolic acidosis on the ion composition of bone, there are few in vivo observations. We utilized a high-resolution scanning ion microprobe with secondary ion mass spectroscopy to determine whether in vivo metabolic acidosis would alter bone mineral in a manner consistent with its purported role in buffering the increased proton concentration. Postweanling mice were provided distilled drinking water with or without 1.5% NH(4)Cl for 7 days; arterial blood gas was then determined. The addition of NH(4)Cl led to a fall in blood pH and HCO(-)(3) concentration. The animals were killed on day 7, and the femurs were dissected and split longitudinally. The bulk cortical ratios Na/Ca, K/Ca, total phosphate/carbon-nitrogen bonds [(PO(2) + PO(3))/CN], and HCO(-)(3)/CN each fell after 1 wk of metabolic acidosis. Because metabolic acidosis induces bone Ca loss, the fall in Na/Ca and K/Ca indicates a greater efflux of bone Na and K than Ca, suggesting H substitution for Na and K on the mineral. The fall in (PO(2) + PO(3))/CN indicates release of mineral phosphates, and the fall in HCO(-)(3)/CN indicates release of mineral HCO(-)(3). Each of these mechanisms would result in buffering of the excess protons and returning the systemic pH toward normal.  (+info)

Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. (31/1411)

The role and regulation of interleukin 8 (IL-8) in the growth and metastasis of SG, FG, and L3.3 variants derived from COLO 357 human pancreatic cancer cells were determined. After orthotopic implantation in the pancreas of nude mice, SG cells produced the smallest tumors, whereas L3.3 cells produced the largest tumors. SG cells produced no liver metastasis, whereas FG cells produced numerous liver metastases, and L3.3 cells produced more and larger liver metastases. In vitro analysis of IL-8 expression indicated that SG cells expressed the lowest level of IL-8 gene expression as determined by both Northern blot analysis and ELISA, whereas L3.3 cells expressed the highest level of IL-8. Immunohistochemical analysis of tumor lesions indicated that IL-8 overexpression was predominant in the regions surrounding necrotic areas, where cells were exposed to low oxygen tension (hypoxia) and acidic pH. In vitro treatment of FG tumor cells with hypoxia or acidosis led to an increased expression of IL-8. To directly determine the role of IL-8 in the growth and metastasis of pancreatic cancer, FG cells were transfected with IL-8 sense or antisense oligonucleotide expression vectors. The neo-resistance gene-transfected FG cells were used as controls. Decreased IL-8 expression after transfection with IL-8 antisense oligonucleotide expression vector retarded the growth of FG cells in mice after intrapancreatic implantation, which correlated with decreased tumor angiogenesis. Our data demonstrated that hypoxia and acidosis contribute to the overexpression of IL-8, which in turn plays an important role in tumor angiogenesis and contributes significantly to the aggressive biology of human pancreatic cancer.  (+info)

Automated metabolic profiling and interpretation of GC/MS data for organic acidemia screening: a personal computer-based system. (32/1411)

We have developed a personal computer-based system designed for automated metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry (GC/MS) and data interpretation for organic acidemia screening. For the automated profiling, we compiled retention indices, two target ions and their intensity ratio for 126 urinary metabolites. Metabolites above the cut-off values were flagged as abnormal compounds. The data interpretation was based on combination of the flagged metabolites. Diagnostic or index metabolites were categorized into three groups, "AND," "OR" and "NO," and compiled for each disorder to improve the specificity of the diagnosis. Groups "AND" and "OR" comprised essential and optional compounds, respectively, which and both to reach a specific diagnosis. Group "NO" comprised metabolites that must be absent to make a definite diagnosis. We tested this system by analyzing urine specimens from 48 patients previously diagnosed as having organic acidemias. In all cases, the diagnostic metabolites were identified and each correct diagnosis could be found among the possible diseases suggested by the system. Hence, with this simplified automated system, more people will be able to participate extensively in any screening programs using GC/MS.  (+info)